首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
The 35000-Mr beta-adrenergic receptor mRNA binding protein (beta ARB) is induced by beta-adrenergic agonists and binds to G-protein-linked receptor mRNAs that exhibit agonist-induced destabilization. Recently, we identified a 20-nucleotide, AU-rich region in the 3'-untranslated region of the hamster beta 2-adrenergic receptor mRNA consisting of an AUUUUA hexamer flanked by U-rich regions, which constitutes the binding domain for beta ARB. U to G substitution in the hexamer region attenuates the binding of beta ARB, whereas U to G substitution of hexamer and flanking U-rich domains abolishes binding of beta ARB and stabilizes beta 2-adrenergic receptor mRNA levels in transfectant clones challenged with either isoproterenol or cyclic AMP. In the study presented here, we mutated the 20-nucleotide ARE region to establish the minimal AU-rich sequence required for beta ARB binding. U to G substitutions of flanking poly(U) regions and of the hexamer established the nature of the binding properties. Using various mutants, we demonstrated also that binding of beta ARB correlates with the extent of destabilization of beta 2-adrenergic receptor mRNA in response to agonist stimulation. High-affinity binding of hamster, rat, mouse, porcine, and human ARE sequences to beta ARB was revealed by SDS-polyacrylamide gel electrophoresis following UV-catalyzed cross-linking and by gel mobility shift assays. Further, beta ARB was shown to bind more avidly to the 20-nucleotide ARE region than to well-established mRNA destablization sequences of tandem repeats of five pentamers. Thus, for beta 2-adrenergic receptor, mRNA destabilization likely occurs via conserved AU-rich elements present in the 3'-untranslated regions of receptor mRNAs.  相似文献   

2.
Cloning of two additional catecholamine receptors from rat brain   总被引:4,自引:0,他引:4  
An approach based on the polymerase chain reaction (PCR) was used to isolate additional members of the G-linked receptor family from a rat striatal lambda gtII cDNA library. Priming with one degenerate probe corresponding to highly conserved consensus sequences in the third transmembrane (TM) domain of 15 G-linked receptors and sequences in the phage vector resulted in one clone (G-13) encoding a dopamine D2 receptor variant with a 29 amino acid insert in the third cytoplasmic loop. In addition, the amino acid sequence encoded by clone G-36 contained conserved sequences characteristic of the G-linked class of receptors and displayed sequence homology in TM domains with the beta 2-adrenergic receptor (48%). Two conserved serine residues in TM5 postulated to be part of a ligand binding site in the adrenergic receptor, suggests that G-36 encodes a catecholaminergic receptor. Northern blot analysis confirmed the expression of G-36 in rat brain, but not in kidney, heart and lung. Several strong hybridizing bands to G-36 were obtained in both human and rat genomic DNA. The general PCR strategy employed here should prove to be extremely useful for the isolation of other members of the G-linked receptor family.  相似文献   

3.
Plasma membrane recycling of G protein-coupled receptors can occur by at least two distinct mechanisms as follows: a "default" mechanism that occurs nonselectively, and a specifically sorted mechanism that requires the endosome-associated protein Hrs. In this study we have defined a sequence in the beta2-adrenergic receptor cytoplasmic tail that confers Hrs dependence on receptor recycling. This sequence resembles acidic dileucine class motifs found in other membrane proteins but is structurally and functionally distinct from previously identified sorting sequences. Mutation of the novel sorting sequence rendered plasma membrane recycling independent of Hrs and independent of a distal PDZ ligand required for Hrs-dependent recycling. We propose that the novel sorting sequence functions to "switch" endocytic trafficking between mechanistically distinct recycling modes, thereby explaining failure of the wild type beta2-adrenergic receptor to recycle efficiently by default.  相似文献   

4.
Rhodopsin is a seven-transmembrane helix receptor that binds and catalytically activates the heterotrimeric G protein transducin (G(t)). This interaction involves the cytoplasmic surface of rhodopsin, which comprises four putative loops and the carboxyl-terminal tail. The fourth loop connects the carboxyl end of transmembrane helix 7 with Cys(322) and Cys(323), which are both modified by membrane-inserted palmitoyl groups. Published data on the roles of the fourth loop in the binding and activation of G(t) are contradictory. Here, we attempt to reconcile these conflicts and define a role for the fourth loop in rhodopsin-G(t) interactions. Fluorescence experiments demonstrated that a synthetic peptide corresponding to the fourth loop of rhodopsin inhibited the activation of G(t) by rhodopsin and interacted directly with the alpha subunit of G(t). A series of rhodopsin mutants was prepared in which portions of the fourth loop were replaced with analogous sequences from the beta(2)-adrenergic receptor or the m1 muscarinic receptor. Chimeric receptors in which residues 310-312 were replaced could not efficiently activate G(t). The defect in G(t) interaction in the fourth loop mutants was not affected by preventing palmitoylation of Cys(322) and Cys(323). We suggest that the amino terminus of the fourth loop interacts directly with G(t), particularly with Galpha(t), and with other regions of the intracellular surface of rhodopsin to support G(t) binding.  相似文献   

5.
We constructed five genes encoding mutant human beta 2-adrenergic receptor sequence (beta 2AR) which contained 12-22 amino acid substitutions with corresponding sequence from the human alpha 2AAR in order to assess the receptor domains involved in Gs versus Gi recognition and coupling. Mutant beta 2AR with substitutions in the N (S1)- and C-terminal (S2) portions of the third intracellular loop, the proximal cytoplasmic tail (S3), and two combinations thereof (S2,3 and S1,2,3), were stably expressed in Chinese hamster fibrobasts (CHW-1102), as were the human beta 2AR and alpha 2AAR at comparable receptor levels. All mutant receptors with S2 substitutions (i.e. S2, S2,3, S1,2,3) were significantly (approximately 85%) uncoupled from Gs. Upon exposure to pertussis toxin, which uncouples receptors from Gi, S1,2,3 exhibited a 526 +/- 99% increase in agonist-stimulated adenylylcyclase activity compared with a 59 +/- 13% increase with the wild type receptor. This enhanced ability of S1,2,3 to interact with Gs following pertussis toxin treatment indicates that, in the absence of toxin exposure, substantial coupling occurs between the mutant receptor and Gi. Mutant beta 2AR bearing only one or two alpha 2AAR-substituted sequences showed no such enhancement. Forskolin-stimulated enzyme activities were increased by pertussis toxin treatment to similar degrees in all clones examined, indicating that the observed effects are confined to the receptor-mediated pathway. In the absence of GTP, competition binding experiments with S1,2,3, beta 2AR and alpha 2AAR revealed that approximately 40-50% of the receptors formed a high affinity binding state for agonist. Pertussis toxin treatment markedly reduced this to approximately 19% with S1,2,3, while having no effect on beta 2AR and completely eliminating high affinity agonist binding to alpha 2AAR. These results suggest that S1,2,3 interacts with Gi as well as Gs, and that receptor:G protein coupling requires the concerted participation of multiple cytoplasmic receptor domains.  相似文献   

6.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

7.
Activation of guanyl nucleotide regulatory proteins (G proteins) by hormones and neurotransmitters appears to require the formation of high affinity agonist-receptor-G protein ternary complexes. In the case of the beta 2-adrenergic receptor, multiple regions of the molecule have been implicated in coupling to the stimulatory G protein Gs. This finding raises the possibility that discrete regions of the receptor mediate ternary complex formation, whereas different loci may be involved in other aspects of G protein activation. To date, however, mutagenesis studies with the beta 2-adrenergic receptor have not clarified this question since mutant receptors with impaired abilities to activate Gs have generally possessed a diminished capacity to form the ternary complex as assessed in binding assays. We have expressed in a mammalian cell line a mutant beta 2-adrenergic receptor comprising a seven-amino acid deletion in the carboxyl-terminal region of its third cytoplasmic loop (D267-273), a region proposed to be critically involved in coupling to Gs. When tested with beta-adrenergic agonists, the maximal adenylyl cyclase response mediated by this mutant receptor was less than one-half of that seen with the wild-type receptor. Nevertheless, D267-273 exhibited high affinity agonist binding identical to that of the wild-type receptor. In addition, agonist-induced sequestration of the receptor, a property not mediated by Gs, was also normal. These findings indicate that the formation of high affinity agonist-receptor-Gs complexes is not sufficient to fully activate Gs. Instead, an additional stimulatory signal appears to be required from the receptor. Our data thereby suggest that the molecular determinants of the beta 2-adrenergic receptor involved in formation of the ternary complex are not identical to those that transmit the agonist-induced stimulatory signal to Gs.  相似文献   

8.
Molecular sorting of G protein-coupled receptors (GPCRs) between divergent recycling and lysosomal pathways determines the functional consequences of agonist-induced endocytosis. The carboxyl-terminal cytoplasmic domain of the beta2 adrenergic receptor (beta2AR) mediates both PDZ binding to Na+/H+ exchanger regulatory factor/ezrin/radixin/moesin-binding phosphoprotein of 50 kDa (NHERF/EBP50) family proteins and non-PDZ binding to the N-ethylmaleimide-sensitive factor (NSF). We have investigated whether PDZ interaction(s) are actually sufficient to promote rapid recycling of endocytosed receptors and, if so, whether PDZ-mediated sorting is restricted to the beta2AR tail or to sequences that bind NHERF/EBP50. The trafficking effects of short (10 residue) sequences differing in PDZ and NSF binding properties were examined using chimeric mutant receptors. The recycling activity of the beta2AR-derived tail sequence was not blocked by a point mutation that selectively disrupts binding to NSF, and naturally occurring PDZ ligand sequences were identified that do not bind detectably to NSF yet function as strong recycling signals. The carboxyl-terminal cytoplasmic domain of the beta1-adrenergic receptor, which does not bind either to NSF or NHERF/EBP50 and interacts selectively with a distinct group of PDZ proteins, promoted rapid recycling of chimeric mutant receptors with efficiency similarly high as that of the beta2AR tail. These results indicate that PDZ domain-mediated protein interactions are sufficient to promote rapid recycling of GPCRs, independent of binding to NSF. They also suggest that PDZ-directed recycling is a rather general mechanism of GPCR regulation, which is not restricted to a single GPCR, and may involve additional PDZ domain-containing protein(s) besides NHERF/EBP50.  相似文献   

9.
The thyrotropin (TSH) receptor belongs to a family of guanine nucleotide protein-coupled receptors with seven transmembrane-spanning regions joined regulatory together by extracellular and intracellular loops. The cytoplasmic domain comprises three cytoplasmic loops and a cytoplasmic tail that are likely to be important in coupling of the receptor to the guanine nucleotide proteins. To address the question of which portions of the cytoplasmic domain of the TSH receptor are important in this process, we have altered groups of amino acids in the region of the TSH receptor by site-directed mutagenesis. Because of the low affinity of TSH binding to the TSH receptor mutated in the amino terminus of the second cytoplasmic loop and the amino terminus of the cytoplasmic tail, definitive conclusions cannot be made regarding the roles of these regions in signal transduction. However, our data indicate that the first cytoplasmic loop (residues 441-450), the carboxyl-terminal region of the second cytoplasmic loop (residues 528-537), and the carboxyl-terminal (but not the amino-terminal) region of the third cytoplasmic loop (residues 617-625) are important in the ability of the TSH receptor to mediate an increase in intracellular cAMP production. Furthermore, two-thirds of the carboxyl-terminal end of the cytoplasmic tail (residues 709-764; corresponding to the region not conserved between the TSH and lutropin/chorionic gonadotropin receptors) can be removed without functional impairment of the TSH receptor.  相似文献   

10.
We have recently demonstrated that synthetic peptides corresponding to the third cytoplasmic (3i) loop (residues 533 to 555) and a region in the carboxy-terminal cytoplasmic tail (residues 645 to 653) of the rat testicular follicle-stimulating hormone receptor (FSHR) affected signal transduction in rat testis membranes and cultured rat Sertoli cells. In order to define more precisely the peptide domains involved, we synthesized truncated peptide amides corresponding to FSHR residues 551–555 (KIAKR) and 650–653 (RKSH), respectively. These two regions were chosen since they contained a minimal structural motif present in G protein activator regions of several other G protein-coupled receptors (i.e., B-X-X-B-B or B-B-X-B, B representing a basic amino acid). Neither peptide inhibited binding of FSH to testis membrane receptors. Each peptide significantly reduced FSH-stimulated estradiol biosynthesis by intact cultured rat Sertoli cells. The same results were obtained with streptolysin O-permeabilized Sertoli cells. No effect was noted on forskolin-induced steroidogenesis, indicating that the peptide effects were not due to interaction with adenylyl cyclase. Each peptide amide, however, induced concentration-dependent increases in guanine nucleotide exchange in rat testis membranes. Our results indicate that interaction of FSH receptor with its associated G protein may involve relatively restricted peptide sequences, and include residues 551–555 (KIAKR) in the third cytoplasmic loop, and residues 650–653 (RKSH) in the carboxy-terminal cytoplasmic tail of the FSH receptor.  相似文献   

11.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.  相似文献   

12.
Pharmacological analysis of ligand binding to the beta-adrenergic receptor (beta AR) has revealed the existence of two distinct receptor subtypes (beta 1 and beta 2) which are the products of different genes. The predicted amino acid sequences of the beta 1 and beta 2 receptors differ by 48%. To identify the regions of the proteins responsible for determining receptor subtype, chimeras were constructed from domains of the human beta 1 and hamster beta 2 receptors. Analysis of the ligand-binding characteristics of these hybrid receptors revealed that residues in the middle portion of the beta AR sequence, particularly around transmembrane regions 4 and 5, contribute to the subtype specific binding of agonists. Smaller molecular replacements of regions of the hamster beta 2 AR with the analogous regions from the avian beta 1 AR, however, failed to identify any single residue substitution capable of altering the subtype specificity of the receptor. These data indicate that, whereas sequences around transmembrane regions 4 and 5 may contribute to conformations which influence the ligand-binding properties of the receptor, the subtype-specific differences in amine-substituted agonist binding cannot be attributed to a single molecular interaction between the ligand and any amino acid residue which is divergent between the beta 1 and beta 2 receptors.  相似文献   

13.
Chicken nerve growth factor (NGF) receptor cDNAs have been isolated and sequenced in an effort to identify functionally important receptor domains and as an initial step in determining the functions of the NGF receptor in early embryogenesis. Comparisons of the primary amino acid sequences of the avian and mammalian NGF receptors have identified several discrete domains that differ in their degree of conservation. The highly conserved regions include an extracellular domain, likely to be involved in ligand binding, in which the positions of 24 cysteine residues and virtually all negatively charged residues are conserved; a transmembrane region, including flanking stretches of extracellular and cytoplasmic amino acids, which has properties suggesting it interacts with other proteins; and a cytoplasmic PEST sequence, which may regulate receptor turnover. Transient expression of NGF receptor mRNA has been seen in many regions of the developing CNS. Experiments suggest that both NGF and its receptor help regulate development of the retina.  相似文献   

14.
Molecular cloning has revealed the primary structure of a number of G-protein-linked receptors. The organization and topography of these proteins predicted to have seven hydrophobic membrane-spanning domains, in contrast, have not been established. Antibodies were prepared against 11 peptides corresponding to each of the hydrophilic sequences of the hamster beta 2-adrenergic receptor. Each of the anti-peptide antibodies displayed immunoreactivity for its synthetic peptide antigen and beta 2-adrenergic receptor (Mr 65,000) on blots of cell membranes and of purified receptor. All but three anti-peptide antisera also displayed immunoreactivity toward human placental and rat fat cell beta 1-adrenergic receptors, reflecting the level of sequence identity that exists between the two subtypes, Chinese hamster ovary cells stably transfected with an expression vector harboring the cDNA encoding the hamster beta 2-adrenergic receptor provided a cell type with 2 million receptors/cell, suitable for in situ localization of the sequences used as antigens. Indirect immunofluorescence of intact and permeabilized cells performed with these site-directed anti-peptide antibodies permitted the assignment of the general topography of each of the hydrophilic sequences of this G-protein-linked receptor. The results support the predictive value of hydropathy analysis for one class of membrane proteins with multiple transmembrane-spanning domains.  相似文献   

15.
The membrane proximal regions of integrin alpha and beta subunits are highly conserved in evolution. In particular, all integrin alpha subunits share the KXGFFKR sequence at the beginning of their cytoplasmic domains. Previous work has shown that this domain is important in integrin receptor assembly. Using chimeric integrin alpha and beta subunits, we show that the native cytoplasmic domains of both subunits must be present for efficient assembly. Most strikingly, chimeric alpha 1 and beta 1 subunits with reciprocally swapped intracellular domains dimerize selectively into collagen IV receptors expressed at high levels on the surface. However, these receptors, which bind ligand efficiently, are deficient in a variety of post-ligand binding events, including cytoskeletal association and induction of tyrosine phosphorylation. Furthermore, deletion of the distal alpha cytoplasmic domain in the swapped heterodimers leads to ligand-independent focal contact localization, which also occurs in wild-type subunits when the distal cytoplasmic domain is deleted. These results show that proper integrin assembly requires opposed alpha and beta cytoplasmic domains, and this opposition prevents ligand-independent focal contact localization. Our working hypothesis is that these two domains may associate during receptor assembly and provide the mechanism for integrin receptor latency.  相似文献   

16.
Nicotinic and serotoninergic 5HT3 receptors share important sequence identities except for their cytoplasmic loop. Both ends of this loop display conserved 3D helical structures with distinct primary sequences. We decided to check whether these two helices named F and G play a role in the sub-cellular distribution of different nicotinic receptors. We systematically exchanged each helix with the equivalent sequence of neuronal nicotinic and alpha4, beta2 and alpha7 subunits in the functional chimeric alpha7-5HT3 receptor used as a model system. The new chimeras were expressed in vitro in polarized epithelial cells from pig kidney. We quantified synthesis and export of the receptors to the cell surface by measuring alpha-bungarotoxin binding sites. Immunogold labelling was used, at the electron microscope level, to determine the amount of each chimera present at either domain, apical and/or basolateral, of these cells. We noticed that in epithelial cells the majority of alpha-bungarotoxin binding sites remained sequestered in the cytoplasm as already observed in neurons in vivo. The majority of the pentamers present at the cell surface were located at the apical domain. Our results suggest that helix F and G differently regulate assembly and export to the cell surface of alpha-bungarotoxin binding receptors.  相似文献   

17.
Structure-function analysis of Frizzleds   总被引:1,自引:0,他引:1  
Frizzleds, cell surface receptors that mediate the actions of Wnt ligands on early development, are heptahelical (based upon hydropathy analysis) and couple to heterotrimeric G proteins. The primary structure of all ten mammalian Frizzleds display many landmarks observed in virtually all G protein-coupled receptors, including an exofacial N-terminus that is N-glycosylated, the presence of seven hydrophobic transmembrane segments predicted to form alpha-helixes, and three intracellular loops as well as a cytoplasmic, C-terminal tail that harbor suspected sites for protein phosphorylation. Prediction of the G proteins to which Frizzleds mediate signaling based upon a bioinformatic analysis of the primary sequence of the intracellular domains are in good agreement with functional screens in Drosophila, zebrafish, and mouse models of development, e.g., predicting Frizzled-1 to interact with members of the Gi/Go protein family. Likewise various Wnt signaling pathways are sensitive to treatment with pertussis toxin and knock-down of specific G protein alpha-subunits. Homology among the sequences encoding the cytoplasmic domains of human Frizzleds is high and the various Frizzleds can be segregated into subsets predicted to share some common downstream signaling elements. Among different species, homologies can reveal conservation of signaling to cognate G protein partners. Additionally, cytoplasmic domains of the prototypic beta2-adrenergic receptor can be substituted with those from either Frizzled-1 or Frizzled-2 to create chimeric receptors that are activated by beta-adrenergic agonists, yet signal with high fidelity to the Wnt/beta-catenin and Wnt/Ca2+, cyclic GMP pathways, respectively, regulating key aspects of early development. The nature of Frizzled-based signaling complexes, their temporal assembly, and spatial distribution via scaffold protein remains to be elucidated, as does whether or not these Wnt receptors display agonist-induced desensitization, internalization, and re-cycling to the cell membrane.  相似文献   

18.
Molecular characterization of a functional cDNA for rat substance P receptor   总被引:37,自引:0,他引:37  
This paper describes the amino acid sequence of the rat substance P receptor and its comparison with that of the rat substance K receptor on the basis of molecular cloning and sequence analysis. From a rat brain cDNA library constructed with an RNA expression vector, we identified a cDNA mixture containing a functional substance P receptor cDNA by examining electrophysiologically a receptor expression following injection of the mRNAs synthesized in vitro into Xenopus oocytes. A receptor cDNA clone was then isolated by cross-hybridization with the bovine substance K receptor cDNA. The clone was confirmed by selective binding of substance P to the cloned receptor expressed in mammalian COS cells. The deduced amino acid sequence (407 amino acid residues) possesses seven putative membrane spanning domains and shows a sequence similarity to the members of G-protein-coupled receptors. The rat substance P and substance K receptors are very similar in both size and amino acid sequences, particularly in the putative transmembrane regions and the first and second cytoplasmic loops. This similarity is in marked contrast to the sequence divergence in the amino- and carboxyl-terminal regions and the third cytoplasmic loop. The observed sequence similarity and divergence would thus contribute to the expression of similar but pharmacologically distinguishable activities of the two tachykinin receptors.  相似文献   

19.
Residues 370-383 (helix C) of the human nerve growth factor receptor (NGF-R) are highly similar to the sequence of the 14 residue wasp toxin, mastoparan. Both regions are predicted to form amphiphilic alpha-helices, as is the amino-terminal region of the third intracytoplasmic loop (i3) of the beta 2-adrenergic receptor (beta 2AR). As both mastoparan and the beta 2AR i3 interact with G-proteins, it is suggested that helix C of the NGF-R may facilitate interactions with a cytoplasmic protein. A similar structural motif was identified in the cytoplasmic domains of a number of other growth factor receptors, suggesting an important role for this motif in signal transduction mechanisms.  相似文献   

20.
G protein-coupled receptors are classified into several families on the basis of their amino acid sequences and the members of the same family exhibit sequence similarity but those of different families do not. In family 1 GPCRs such as rhodopsin and adrenergic receptor, extensive studies have revealed the stimulus-dependent conformational change of the receptor: the rearrangement of transmembrane helices III and VI is essential for G protein activation. In contrast, in family 3 GPCRs such as metabotropic glutamate receptor (mGluR), the inter-protomer relocation upon ligand binding has been observed but there is much less information about the structural changes of the transmsmbrane helices and the cytoplasmic domains. Here we identified constitutively active mutation sites at the cytoplasmic borders of helices II and IV of mGluR8 and successfully inhibited the G protein activation ability by engineering disulfide cross-linking between these cytoplasmic regions. The analysis of all possible single substitution mutants of these residues revealed that some steric interactions around these sites would be important to keep the receptor protein inactive. These results provided the model that the conformational changes at the cytoplasmic ends of helices II and IV of mGluR are involved in the efficient G protein coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号