首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S Fan  K M Scow 《Applied microbiology》1993,59(6):1911-1918
The biodegradation of trichloroethylene (TCE) and toluene, incubated separately and in combination, by indigenous microbial populations was measured in three unsaturated soils incubated under aerobic conditions. Sorption and desorption of TCE (0.1 to 10 micrograms ml-1) and toluene (1.0 to 20 micrograms ml-1) were measured in two soils and followed a reversible linear isotherm. At a concentration of 1 micrograms ml-1, TCE was not degraded in the absence of toluene in any of the soils. In combination, both 1 microgram of TCE ml-1 and 20 micrograms of toluene ml-1 were degraded simultaneously after a lag period of approximately 60 to 80 h, and the period of degradation lasted from 70 to 90 h. Usually 60 to 75% of the initial 1 microgram of TCE ml-1 was degraded, whereas 100% of the toluene disappeared. A second addition of 20 micrograms of toluene ml-1 to a flask with residual TCE resulted in another 10 to 20% removal of the chemical. Initial rates of degradation of toluene and TCE were similar at 32, 25, and 18 degrees C; however, the lag period increased with decreasing temperature. There was little difference in degradation of toluene and TCE at soil moisture contents of 16, 25, and 30%, whereas there was no detectable degradation at 5 and 2.5% moisture. The addition of phenol, but not benzoate, stimulated the degradation of TCE in Rindge and Yolo silt loam soils, methanol and ethylene slightly stimulated TCE degradation in Rindge soil, glucose had no effect in either soil, and dissolved organic carbon extracted from soil strongly sorbed TCE but did not affect its rate of biodegradation.  相似文献   

2.
D Y Mu  K M Scow 《Applied microbiology》1994,60(7):2661-2665
Toluene is one of several cosubstrates able to support the cometabolism of trichloroethylene (TCE) by soil microbial communities. Indigenous microbial populations in soil degraded TCE in the presence, but not the absence, of toluene after a 60- to 80-h lag period. Initial populations of toluene and TCE degraders ranged from 0.2 x 10(3) to 4 x 10(3) cells per g of soil and increased by more than 4 orders of magnitude after the addition of 20 micrograms of toluene and 1 microgram of TCE per ml of soil solution. The numbers of TCE and toluene degraders and the percent removal of TCE increased with an increase in initial toluene concentration. As the initial TCE concentration was increased from 1 to 20 micrograms/ml, the numbers of toluene and TCE degraders and the rate of toluene degradation decreased, and no TCE degradation occurred. No toluene or TCE degradation occurred at a TCE concentration of 50 micrograms/ml.  相似文献   

3.
The effects of trichloroethylene (TCE) on microbial community composition were analyzed by reverse sample genome probing. Soil enrichments were incubated in dessicators containing an organic phase of either 1 or 10% (w/w) toluene in vacuum pump oil, delivering constant equilibrium aqueous concentrations of 16 and 143mg/l, respectively. Increasing the equilibrium aqueous concentration of TCE from 0 to 10mg/l led to shifts in community composition at 16, but not at 143mg/l of toluene. In closed system co-degradation studies, TCE at an aqueous concentration of 1mg/1 was effectively degraded by toluene-degrading soil enrichments once the aqueous toluene concentration dropped below 25mg/l. Little TCE degradation was observed at higher toluene concentrations (50–250mg/l). The results indicate that TCE changes microbial community composition under conditions where it is being actively metabolized.  相似文献   

4.
Biotransformation of trichloroethylene in soil.   总被引:20,自引:17,他引:3       下载免费PDF全文
Trichloroethylene was shown to degrade aerobically to carbon dioxide in an unsaturated soil column exposed to a mixture of natural gas in air (0.6%).  相似文献   

5.
Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N) mineralization. Most soil organic nitrogen is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate limiting for plant nitrogen accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease-specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared with bulk soil. Low-molecular-weight (MW) DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density-dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals N-acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and nitrogen cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in seven of eight isolates disrupted enzyme activity. Many Alphaproteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of nitrogen-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere nitrogen mineralization.  相似文献   

6.
Loss in microbial diversity affects nitrogen cycling in soil   总被引:3,自引:0,他引:3  
Microbial communities have a central role in ecosystem processes by driving the Earth''s biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated.  相似文献   

7.
This study investigated the cycling of C and N following application of olive mill wastewater (OMW) at various rates (0, 42, 84, and 168 m3/ha). OMW stimulated respiration rate throughout the study period, but an increase in soil organic matter was observed only at the highest rate. Soil phenol content decreased rapidly within 2 weeks following application but neither phenol oxidase and peroxidase activity nor laccase gene copies could explain this response. Soil NH4 +-N content increased in response to OMW application rate, while an opposite trend observed for NO3 ?-N, which attributed to immobilization. This decrease was in accordance with amoA gene copies of archaeal and bacterial ammonia oxidizers in the first days following OMW application. Afterwards, although amoA gene copies and potential nitrification rates recovered to values similar to or higher than those in the non-treated soils, NO3 ?-N content did not change among the treatments. A corresponding increase in denitrifying gene copies (nirK, nirS, nosZ) during that period indicates that denitrification, stimulated by OMW application rate, was responsible for this effect; a hypothesis consistent with the decrease in total Kjeldahl nitrogen content late in the season. The findings suggest that land application of OMW is a promising practice for OMW management, even at rates approaching the soil water holding capacity.  相似文献   

8.
The effects of toluene on indigenous microbial populations involved in the soil nitrogen cycle were examined. Ammonia oxidation potential (AOP) and nitrite oxidation potential (NOP) were both reduced after incubation with high toluene concentrations for 45 days, with the former activity showing greater sensitivity. KCl-extractable ammonium (NH sup4 sup+ ext) levels increased dramatically in soil exposed to high toluene levels, and arginine ammonification was not significantly affected. Alfalfa-amended soil incubated in the presence of 200 g toluene ml–1 showed progressive accumulation of NH inf4 sup+ ext over 37 days, indicating that mineralization of plant-associated nitrogen was not hindered by toluene. AOP in treated soil was much less than in control soil on days 7 and 37, but the MPN of ammonia oxidizers in control and exposed soil were not significantly different. Soil incubated with 100 µg toluene ml–1 for 28 days, vented and allowed to incubate for an additional 7 to 30 days, exhibited only slight increases in AOP and NOP, while NH inf4 sup+ ext returned to control levels within a week. Soil exposed to 200 µg toluene ml–1 and treated in the same manner showed no increases in either AOP or NOP, and NH inf4 sup+ ext remained elevated for the duration of the experiment, indicating more longterm effects on soil nitrogen cycling had occurred. Ammonia oxidizer levels in control soil and soil incubated with 100 µg toluene ml–1 were not appreciably different, whereas levels of ammonia oxidizers were very low in soil exposed to 200 µg toluene ml–1 and increased only slightly by 30 days post vent. Experiments to determine how toluene affects the AOP of soil indicated a competitive inhibition mechanism, with an effective concentration causing 50% reduction in activity (EC50) of 11 µM toluene, and a competitive inhibition constant (K) of 0.1 ± 0.05 µM toluene. These results indicate the potential for toluene to adversely impact nitrogen cycling in the terrestrial ecosystem by affecting indigenous soil nitrifiers, which are sensitive to lower levels of toluene than has been previously reported. Correspondence to: K.M. Scow.  相似文献   

9.
生物炭对土壤氮循环的影响研究进展   总被引:15,自引:0,他引:15  
王洪媛  盖霞普  翟丽梅  刘宏斌 《生态学报》2016,36(19):5998-6011
在定性资料调研的基础上,基于ISI Web of Science数据库,采用文献计量学方法,针对"生物炭对土壤氮循环的影响"及其分支技术进行文献检索、数据整理、分类以及主题分析,从国际整体研究态势和分支技术主题两个角度探讨了目前国内外生物炭影响土壤氮循环方面的研究进展,并从生物炭对土壤N_2O排放、肥料利用率、硝化速率、NH_4~+/NH_3吸附、NO_3~-吸附以及土壤微生物氮素固持等6个方面的影响进行了详细论述。近年来,生物炭对土壤氮循环的影响研究急剧增温,发文量逐年增加,截止2014年6月,SCI数据库中共检索到2468篇论文。其中,期刊论文2188篇、综述性论文93篇,其它类论文177篇。美国、加拿大、英国等欧美国家在该领域的研究中占有明显优势,而自2010年以来,中国已成为该领域全球第一的年发文大国。发文热点主要集中在生物炭对土壤N_2O排放和对氮肥利用率的影响2个方面,占总发文量的73.7%。从6个方面的分支技术主题来看,生物炭的影响作用争议性较大。大部分研究认为,生物炭能够抑制土壤N_2O排放、提高氮肥利用率、促进土壤硝化速率、提高土壤对NH_4~+/NH_3和NO_3~-的固持作用以及土壤微生物氮素固持作用等,但也有研究表明生物炭会促进土壤N_2O排放、抑制土壤硝化速率,且不具备NO_3~-固持能力。这主要与生物炭的类型、老化过程,以及土壤类型及其含水孔隙率等密切相关。总之,探讨了生物炭对土壤氮循环影响的研究动态、热点及主要结论,为深入了解生物炭对土壤理化特性影响的作用机制提供了一定研究思路,为生物炭的农业应用提供了一定借鉴和参考。  相似文献   

10.
土壤氮素循环模型及其模拟研究进展   总被引:10,自引:1,他引:10  
N既是植物必需的营养元素,又是造成环境污染的重要元素.正确模拟土壤中N循环已经成为科学家共同关注的热点问题.简述了土壤N循环的基本过程,重点介绍了13种土壤N循环模型和6个土壤N循环过程的模拟,并讨论了模拟中存在的参数化问题.  相似文献   

11.
12.
丛枝菌根真菌在土壤氮素循环中的作用   总被引:12,自引:0,他引:12  
陈永亮  陈保冬  刘蕾  胡亚军  徐天乐  张莘 《生态学报》2014,34(17):4807-4815
作为植物需求量最大的营养元素,氮素是陆地生态系统初级生产力的主要限制因子。丛枝菌根真菌能与地球上80%以上的陆生植物形成菌根共生体,帮助宿主植物吸收土壤中的P、N等矿质养分。目前,丛枝菌根真菌与氮素循环相关研究侧重于真菌对氮素的吸收形态以及共生体中氮的传输代谢机制,却忽略了丛枝菌根真菌在固氮过程、矿化与吸收过程、硝化过程、反硝化过程以及氮素淋洗过程等土壤氮素循环过程中所起到的潜在作用,并且越来越多的证据也表明丛枝菌根真菌是影响土壤氮素循环过程的重要因子。总结了丛枝菌根真菌可利用的氮素形态及真菌的氮代谢转运相关基因的研究现状;重点分析了丛枝菌根真菌在调控土壤氮素循环过程中的潜在作用以及在生态系统中的重要生态学意义,同时提出了丛枝菌根真菌在土壤氮素循环过程中一些需要深入研究的问题。  相似文献   

13.
Morris  Kendalynn A.  Saetre  Peter  Norton  Urszula  Stark  John M. 《Biogeochemistry》2022,157(2):215-226
Biogeochemistry - Salinization of freshwater ecosystems impacts carbon cycling, a particular concern for coastal wetlands, which are important agents of carbon sequestration. Previous experimental...  相似文献   

14.
Ma LN  Lü XT  Liu Y  Guo JX  Zhang NY  Yang JQ  Wang RZ 《PloS one》2011,6(11):e27645

Background

Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.

Methodology/Principal Findings

A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.

Conclusions/Significance

Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.  相似文献   

15.
Biotransformation of trichloroethylene in soil   总被引:24,自引:0,他引:24  
Trichloroethylene was shown to degrade aerobically to carbon dioxide in an unsaturated soil column exposed to a mixture of natural gas in air (0.6%).  相似文献   

16.
陈洁  骆土寿  周璋  许涵  陈德祥  李意德 《生态学报》2020,40(23):8528-8538
近年来,高速的城市化和工业化建设导致全球大气氮沉降量逐年递增,其中热带亚热带地区氮沉降量显著高于全球平均水平,而大部分热带亚热带森林土壤趋近氮饱和状态,氮沉降增加将持续向土壤输入外源活性氮,极易导致土壤氮过剩,进而破环整个森林生态系统氮循环的平衡。我国热带亚热带地区经济发展快速,氮沉降增加导致的土壤养分失衡和林地退化等生态问题日益凸显,森林土壤氮循环对大气氮沉降的响应及适应机制已引起了学术界的广泛关注。研究表明氮循环各环节均由特定的功能微生物驱动完成,明确氮沉降增加对热带亚热带森林土壤氮循环功能微生物及其介导的关键过程的影响,对评价未来氮沉降增加背景下全球森林土壤氮循环的响应及驱动机制有重要作用,可为促进我国热带亚热带地区森林修复、生态环境的改善与提升提供科学支撑。鉴于此,本文综述了热带亚热带森林土壤氮循环主要过程(如固氮、硝化、反硝化、厌氧氨氧化等)及其功能微生物群落丰度、活性、组成等对氮沉降增加的响应,同时分析了这些功能微生物的群落特征与主要环境因子(如NH4+、NO3-、有机碳、pH、含水量等)的关联性。在此基础上探讨了氮沉降增加下功能微生物对热带亚热带森林土壤氮循环的调控作用,重点探讨了功能微生物如何通过改变丰度与群落组成而影响氮循环过程,并对目前研究中存在的主要问题与未来研究重点进行了简要剖析。  相似文献   

17.
Amino acid mineralization and its fate in soil have effects on soil nitrogen cycling. Here we used 15N-labeled alanine and methionine to study differences in their mineralization from soil organic nitrogen under 60% WHC (water holding capacity) and 90% WHC soil conditions. We found that the maximum mineralization rates were at the 24th hours for alanine and at the 5th hours for methionine, and about two times greater rates at 60% WHC than at 90% WHC. The half-live was 24–72 h for alanine and > 72 h for methionine. Half-lives of amino acids occurred sooner under 90% WHC than under 60% WHC. The results suggested that some kind of amino acids do lead the nitrogen cycling in a specific ecosystem or as a sign to trigger soil nitrogen cycling when land utilization was altered or disturbed severely by humans.  相似文献   

18.
The effects of select monoterpenes on nitrogen (N) mineralization and nitrification potentials were determined in four separate laboratory bioassays. The effect of increasing monoterpene addition was an initial reduction in NO3 -N production (nitrification inhibition), followed by a reduction in the sum of NH4 +-N and NO3 -N (inhibition of net N mineralization and net immobilization at high monoterpene additions. Monoterpenes could produce this pattern by inhibiting nitrification, reducing net N mineralization, enhancing immobilization of NO3 -N relative to NH4 +-N, and/or stimulating overall net immobilization of N by carbon-rich material.Initial monoterpene concentrations in the assay soils were about 5% of the added amount and were below detection after incubation in most samples.Potential N mineralization-immobilization, nitrification, and soil monoterpene concentrations were determined by soil horizon for four collections from a ponderosa pine (Pinus ponderosa) stand in New Mexico. Concentrations of monoterpenes declined exponentially with soil depth and varied greatly within a horizon. Monoterpene content of the forest floor was not correlated with forest floor biomass. Net N mineralization was inversely correlated with total monoterpene content of all sampled horizons. Nitrification was greatest in the mineral soil, intermediate in the F-H horizon, and never occurred in the L horizon. Nitrification in the mineral soil was inversely correlated with the amount of monoterpenes in the L horizon that contain terminal unsaturated carbon-carbon bonds (r 2 = 0.37, P 0.01). This pattern in the field corresponded to the pattern shown in the laboratory assays with increasing monoterpene additions.  相似文献   

19.
Questions: How do young sagebrush shrubs (Artemisia rothrockii, Asteraceae) affect soil moisture availability? How do young sagebrush shrubs affect soil nitrogen cycling? How does the resident herb community respond to shrub removal in the early stages of sagebrush encroachment? Location: Mulkey and Bullfrog Meadows on the Kern Plateau in the Golden Trout Wilderness, Sierra Nevada Mountains, Inyo National Forest, Inyo County, California, USA. Methods: We removed young encroaching sagebrush shrubs from 3.5 m × 3.5 m plots and compared soil moisture, net mineralization, net nitrification, and herb cover with paired control plots over four growing seasons. Results: On average throughout the experiment, the difference between removal plots and control plots in soil moisture was small. Removal plots were wetter by 1.3 ± 2.0% at 0–30 cm depth, 2.1 ± 3.1% at 30–60 cm depth and 3.1 ± 5.8% at 60–90 cm depth. By contrast, after four years, net mineralization was 32 ± 26% (mean ± 95% CI) lower in sagebrush removal plots, suggesting that sagebrush encroachment increases rates of N‐cycling. Total herb cover was 13.0 ± 6.4% (mean ± 95% CI) higher in plots where young sagebrush shrubs were removed. This difference in cover appeared during the first season in which sagebrush shrubs were removed. Conclusions: Our results suggest that while young sagebrush shrubs do not contribute substantially to meadow drying, they alter N cycling rates, and may indirectly increase the rate of their own encroachment by competitively reducing resident herbs.  相似文献   

20.
Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an exclosure set-up in a floodplain grassland grazed by cattle, rabbits and common voles, where we subsequently excluded cattle and rabbits. Exclusion of cattle lead to an increase in vole numbers and a 1.5-fold increase in net annual N mineralization at similar herbivore densities (corrected to metabolic weight). Timing and height of the mineralization peak in spring was the same in all treatments, but mineralization in the vole-grazed treatment showed a peak in autumn, when mineralization had already declined under cattle grazing. This mineralization peak in autumn coincides with a peak in vole density and high levels of N input through vole faeces at a fine-scale distribution, whereas under cattle grazing only a few patches receive all N and most experience net nutrient removal. The other parameters that we measured, which include potential N mineralization rates measured under standardized laboratory conditions and soil parameters, plant biomass and plant nutrient content measured in the field, were the same for all three grazing treatments and could therefore not cause the observed difference. When cows were excluded, more litter accumulated in the vegetation. The formation of this litter layer may have added to the higher mineralization rates under vole grazing, through enhanced nutrient return through litter or through modification of microclimate. We conclude that different-sized herbivores have different effects on N cycling within the same habitat. Exclusion of large herbivores resulted in increased N annual mineralization under small herbivore grazing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号