首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A microcosm containing resuspended river sediment was used to investigate the effect of anionic surfactants on the distribution of bacteria between planktonic and attached populations. Freshwater river sediment containing viable bacteria was preequilibrated in the microcosm, which was subsequently supplemented with biodegradable or recalcitrant surfactants and a non-surface-active carbon and energy source. Population dynamics of both free-living and attached bacteria were measured by epifluorescence microscopy with simultaneous analysis of the residual solution concentration of the xenobiotic carbon source. The addition of the readily biodegradable anionic surfactants sodium decyl sulfate and sodium dodecyl sulfate in separate experiments caused an increase in the number of attached bacteria and a concomitant decrease in the number of free-living bacteria. As biodegradation of the surfactants progressed, these trends reversed and the bacterial populations had returned to their preaddition values by the time when biodegradation was completed. In contrast, sodium tetradecyl sulfate or sodium dodecane sulfonate did not stimulate bacterial association with sediment, nor were they biodegraded in the microcosm. Sodium pyruvate, a non-surface-active carbon and energy source, was readily utilized but caused no bacterial attachment to the sediment. These results indicate that for an anionic surfactant to induce bacterial attachment to river sediment, it must be biodegradable. The bacterial attachment to the sediment appears to be reversible and may be dependent on the accumulation of the surfactant at the surface or as a result of alteration of the surface free energies.  相似文献   

2.
Abstract A biphasic increase in surface hydrophobicity of the surfactant-biodegrading bacterium Pseudomonas C12B has been correlated with biodegradation of the primary alkyl sulphate, sodium dodecyl sulphate. Using both hydrophobic interaction chromatography and microbial adhesion to hydrocarbon to measure surface hydrophobicity, it was shown that the first phase coincides with production of the primary metabolite dodecan-1-ol. The direct addition of dodecan-1-ol to Pseudomonas C12B resulted in the instantaneous increase in surface hydrophobicity, with a subsequent decrease which coincided with dodecan-1-ol biodegradation. In contrast, incubation of Pseudomonas C12B with sodium dodecane sulphonate, a non-metabolizable surfactant analogue of SDS, or the growth-supporting carbon source sodium pyruvate did not alter the surface hydrophobicity. These data are interpreted in terms of a model in which the hydrophobic metabolite dodecan-1-ol enters the bacterial membranes, thus increasing surface hydrophobicity and that these surfactant-biodegradation-dependent changes in bacterial surface hydrophobicity are correlated with reversible attachment of the bacteria to sediment surfaces.  相似文献   

3.
Marine snow aggregates are microbial hotspots that support high bacterial abundance and activities. We conducted laboratory experiments to compare cell-specific bacterial protein production (BPP) and protease activity between free-living and attached bacteria. Natural bacterial assemblages attached to model aggregates (agar spheres) had threefold higher BPP and two orders of magnitude higher protease activity than their free-living counterpart. These observations could be explained by preferential colonization of the agar spheres by bacteria with inherently higher metabolic activity and/or individual bacteria increasing their metabolism upon attachment to surfaces. In subsequent experiments, we used four strains of marine snow bacteria isolates to test the hypothesis that bacteria could up- and down-regulate their metabolism while on and off an aggregate. The protease activity of attached bacteria was 10-20 times higher than that of free-living bacteria, indicating that the individual strains could increase their protease activity within a short time (2 h) upon attachment to surfaces. Agar spheres with embedded diatom cells were colonized faster than plain agar spheres and the attached bacteria were clustered around the agar-embedded diatom cells, indicating a chemosensing response. Increased protease activity and BPP allow attached bacteria to quickly exploit aggregate resources upon attachment, which may accelerate remineralization of marine snow and reduce the downward carbon fluxes.  相似文献   

4.
Nonylphenol (NP) is an estrogenic pollutant which is widely present in the aquatic environment. Biodegradation of NP can reduce the toxicological risk. In this study, aerobic biodegradation of NP in river sediment was investigated. The sediment used for the microcosm experiments was aged polluted with NP. The biodegradation of NP in the sediment occurred within 8 days with a lag phase of 2 days at 30°C. During the biodegradation, nitro-nonylphenol metabolites were formed, which were further degraded to unknown compounds. The attached nitro-group originated from the ammonium in the medium. Five subsequent transfers were performed from original sediment and yielded a final stable population. In this NP-degrading culture, the microorganisms possibly involved in the biotransformation of NP to nitro-nonylphenol were related to ammonium-oxidizing bacteria. Besides the degradation of NP via nitro-nonylphenol, bacteria related to phenol-degrading species, which degrade phenol via ring cleavage, are abundantly present.  相似文献   

5.
Successful surfactant removal from wastewater is often limited by the high concentration of the surfactant. The use of advanced oxidation processes can be the key to aid biological treatment of water containing high amounts of surfactants. The present study analyzes the biodegradation of the anionic surfactant sodium dodecylbenzenesulfonate (SDBS) and the effects of its combination with ozonation. SDBS pre‐ozonation favors the metabolism by microorganisms. Experimental results indicate that the application of a concentration of up to 60 μM of ozone for 60 min, prior to contact with microorganisms, increases the percentage of SDBS removed by biodegradation alone. These results demonstrate that the removal of SDBS and of the total organic carbon is increased by the consecutive use of ozonation and biodegradation.  相似文献   

6.
  The effect of two anionic surfactants was assessed during biodegradation of 13 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAH) in a wood-preserving soil contaminated with creosote and pentacholorophenol for a period of at least 20 years. Sodium dodecyl sulfate (SDS) and biosurfactants from Pseudomonas aeruginosa UG2 were utilized at concentrations of 10, 100 and 500 μg/g soil. Because both surfactants are readily biodegradable, the microcosms received a fresh spike of surfactant every 2 weeks. Biodegradation of aged PAH residues was monitored by GC/MS for a period of 45 weeks. Results indicated that the biodegradation of the three-ring PAH was rapid and almost complete but was slowed by the addition of 100 μg/g and 500 μg/g chemical surfactant. Similarly, at the same concentrations, the two surfactants significantly decreased the biodegradation rate of the four-ring PAH. In this case, the inhibition was more pronounced with SDS. High-molecular-mass PAH (more than four rings) were not biodegraded under the test conditions. It was suggested that the preferential utilization of surfactants by PAH degraders was responsible for the inhibition observed in the biodegradation of the hydrocarbons. The high biodegradability and the inhibitory effect of these two surfactants would have a significant impact on the development of both above-ground and in situ site reclamation processes. Received: 22 February 1996 / Received revision: 31 May 1996 / Accepted: 16 June 1996  相似文献   

7.
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.  相似文献   

8.
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.  相似文献   

9.
The percentage of dividing biomass was calculated for attached and free-living bacteria, in a coastal marine and a freshwater system. In the marine system with low concentrations of total and dissolved organic carbon (TOC and DOC) the percentage of dividing biomass was higher for attached (41.4 ± 13.9) than for the free-living bacteria (22.0 ± 11.7). However, in the freshwater system, which had a higher concentration of TOC and DOC, the percentage of dividing biomass was similar for both communities-attached (53.4 ± 26.5) and free-living (78.4 ± 21.9). Thus the attachment to particulate material is not necessarily an advantage in waters where dissolved organic nutrients are readily available.  相似文献   

10.
The capacities of epilithic and planktonic river bacterial populations to degrade sodium dodecyl sulfate (SDS) in samples taken at two times during 1987 from one clean and four polluted sites in a South Wales river were estimated in die-away tests under simulated environmental conditions. There was a relatively slow disappearance of SDS in die-away tests for both planktonic and epilithic populations taken from the clean source site, as compared with those taken from the downstream polluted sites, for which the rate of biodegradation was accelerated, sometimes after an apparent initial lag period. The kinetic components contributing to the die-away curves were quantified by nonlinear regression analysis in which the experimental data were fitted to a variety of possible kinetic models. All samples except for one from the polluted sites best fitted a model which describes the biodegradation of SDS at concentrations well below its Km by bacteria whose growth is exponential and unaffected by the addition of a test substrate. Each sample from the clean source site fitted a different model, but there was generally little or no growth on endogenous carbon. A consideration of the numerical values of constants derived from the modeling of epilithic and planktonic populations from polluted sites indicated clearly that the biodegradative capacity of epilithic bacterial populations towards SDS is more stable than that of planktonic bacterial populations.  相似文献   

11.
12.
Factors which influence the attachment of bacterioplankton to particles (including phytoplankton) were investigated by using (i) water samples removed from a coastal temperate fjord over an annual cycle and (ii) unialgal cultures of Prorocentrum minimum, Dunaliella tertiolecta, and Skeletonema costatum. Silt and salinity levels in this fjord seawater did not appear to influence bacterial attachment, but the percent attached bacteria was inversely related to both chlorophyll a concentrations and primary productivities. During periods of high primary productivities the percent attached bacteria was low, whereas during periods of low, increasing, and declining primary productivities the percent attached bacteria was high. A similar pattern of bacterial attachment was observed when the three phytoplankton were grown as batch cultures. The percent attached bacterial numbers increased upon the initiation of algal growth and after these cells stopped growing, but not while the algae were growing. We suggest that a major factor influencing the attachment of bacterioplankton is the physiological condition of their major nutrient source, the phytoplankton; mainly free-living bacteria are associated with growing phytoplankton, whereas a much greater proportion of the bacteria are attached among senescent phytoplankton populations.  相似文献   

13.
The study of sensitivity of luminous bacteria isolated from the Black and Azov seas to surfactants from various classes was carried out. It was shown that cationic surfactants had a strong inhibition effect on bacterial luminescence in contrast to anionic and in particular nonionic surfactants. To increase the luminous bacteria sensitivity to the action of OP-10 (nonionic surfactant) and ABS (anionic surfactant), which are widely used in industry, several approaches have been developed. They include modulation of bacterial sensitivity by the additives of cationic substances, use of luminous bacteria at a logarithmic stage of growth, realization of biotesting at low pH = 5.5. The use of these approaches allows to lower effective concentrations of OP-10 and ABS, which caused a decrease of bioluminescence by 50%, 3-200 times and opens perspectives for the use of the bioluminescent method to study these surfactants toxicity on the principle of biosensorics.  相似文献   

14.
A series of 23 neutral, anionic, and zwitterionic surfactants were tested at a concentration of 0.1% wt/vol for their influence on attachment of a Mycobacterium sp. to cellulose acetate (CA) and polyamide (PA) reverse osmosis (RO) membranes. Four cell attachment bioassays were used: (1) semiconcurrent addition of surfactant and bacteria to RO coupons (standard assay); (2) surfactant pretreatment of RO membranes (membrane pretreatment assay); (3) surfactant treatment of adsorbed cells (detachment assay); and (4) surfactant pretreatment of mycobacteria (cell pretreatment assay). Seventeen surfactants inhibited attachment to PA membranes, whereas 15 inhibited attachment to CA in standard assays and, in 13 cases, the same surfactant inhibited attachment to both PA and CA. Despite greater cell attachment to PA than CA, surfactants were typically more effective in the former membrane system. More surfactants were effective in impairing cell attachment than in promoting detachment and a number enhanced attachment in membrane pretreatment assays, suggesting surface modification of RO membranes. Cell pretreatment inhibited attachment to CA membranes, suggesting the bacterial surface was also a target for detergent activity. Multivariate regression and cluster analyses indicated that critical micellar concentration (CMC) was positively correlated with Mycobacterium attachment in CA and PA standard assays. Surfactant dipole moment and octanol/water partitioning (LogP) also contributed to detergent activity in the PA system, whereas dipole moment, molecular topology (i.e., connectivity indices), and charge properties influenced activity in the CA system. Influential variables in membrane pretreatment assays included the LogP, topology indices, and charge properties, whereas CMC played a diminished role. Surfactant dipole moment was most influential in CA membrane detachment assays. Increasing system ionic strength by LiBr addition strengthened inhibition of cell attachment to CA membranes by dodecylbenzene sulfonic acid (DBSA) and promoted DBSA adsorption to CA surfaces as indicated by attenuated total reflection Fourier-transform infrared spectrometry. Results indicate that inhibition of bacterial attachment to RO membranes may be maximized by manipulating surfactant molecular structure to optimize surface adsorption behavior.  相似文献   

15.
2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or β-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.  相似文献   

16.
Zeng G  Fu H  Zhong H  Yuan X  Fu M  Wang W  Huang G 《Biodegradation》2007,18(3):303-310
Strengthened biodegradation is one of the key means to treat surfactant pollution in environment, and microorganism and surfactant have significant effects on degradation. In this paper, co-degradation of CTAB, Triton X-100, SDS and rhamnolipid with glucose by Pseudomonas aeruginosa, Bacillus subtilis and compost microorganisms in liquid culture media, as well as the degradation of rhamnolipid in compost were investigated. The results showed that CTAB was recalcitrant to degrade by the three microorganisms and it also inhibited microorganisms from utilizing readily degradable carbon source. Non-ionic surfactant Triton X-100 could also hardly be degraded, but it was not toxic to microorganisms and would not inhibit the growth of the microorganisms. Anion surfactant SDS had no toxicity to microorganisms and could be co-degraded as carbon source with glucose. Biosurfactant rhamnolipid was a kind of particular surfactant, which had no toxicity and could be degraded by Bacillus subtilis and compost microorganisms, while it could not be utilized by its producing bacterium Pseudomonas aeruginosa. Among these three bacteria, the compost consortium had the strongest degradation capacity on the tested surfactants due to their microorganisms’ diversity. In compost matrix rhamnolipid could be degraded during composting, but not preferentially utilized.  相似文献   

17.
Diel and seasonal variations in abundance, activity, and structure of particle-attached vs free-living bacterial communities were investigated in offshore NW Mediterranean Sea (0–1000 m). Attached bacteria were always less abundant and less diverse but generally more active than free-living bacteria. The most important finding of this study was that the activity of attached bacteria showed pronounced diel variations in the upper mixed water column with higher activities at night. Under mesotrophic conditions, the contribution of attached bacteria to total bacterial activity increased from less than 10% at day time to 83% at night time. At high chlorophyll a concentration, the highest cell-specific activities and contribution to total bacterial activity were due to free-living bacteria at day and to attached bacteria at night. Under summer oligotrophic conditions, free-living bacteria dominated and contributed to the most important part of the bacterial activity at both day and night, whereas attached bacteria were much less abundant but presented the highest cell-specific activities. These diel and seasonal variations in activities were concomitant to changes in bacterial community structure, mainly in the upper layer. The number of attached ribotypes was fairly constant suggesting that particles are colonized by a relatively limited number of ubiquitous ribotypes. Most of these ribotypes were also free-living ribotypes suggesting that attached bacteria probably originate from colonization of newly formed particles by free-living bacteria in the upper layer. These results reinforce the biogeochemical role of attached bacteria in the cycling of particulate organic carbon in the NW Mediterranean Sea and the importance of diel variability in these processes.  相似文献   

18.
The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation was exponential, indicating a high bioavailability of the solubilized hydrocarbons. Nonionic surfactants of the alkylethoxylate type and the alkylphenolethoxylate type with an average ethoxylate chain length of 9 to 12 monomers were toxic to a PAH-degrading Mycobacterium sp. and to several PAH-degrading mixed cultures. Toxicity of the surfactants decreased with increasing hydrophilicity, i.e., with increasing ethoxylate chain length. Nontoxic surfactants enhanced the degradation of fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.  相似文献   

19.
Sample preparation for enumerating attached bacteria in turbid seawater by epifluorescence microscopy was improved by treating samples with a surfactant (Tween 80) followed by sonication. With optimal treatment with Tween 80 (final concentration, 10 ppm [10 μg/ml]) and sonication, as many as 10 times more attached bacteria were enumerated from turbid seawater relative to the number enumerated from an untreated control. Dispersion of bacteria by sonication alone resulted in the enumeration of only 42 to 72% of the attached bacteria. By this technique, fluctuations in the number of attached and free-living bacteria were determined in water from Aransas Pass, Tex., where surface sediments are resuspended on a regular basis by tidal currents. The abundance of attached bacteria increased in proportion to the seawater turbidity that resulted from sediment resuspension. The variation in abundance of free-living bacteria was not directly related to seawater turbidity. However, the magnitude of fluctuation in the abundance of free-living bacteria was related to the extent of turbidity variation during diurnal tides.  相似文献   

20.
Several strains belonging to genera Pseudomonas and Achromobacter and characterized by the ability to degrade anionic surfactants were tested as potential bases of microbial biosensors for surfactant detection. For each strain the substrate specificity and stability of sensor signals were studied. The total amount of the substrates tested (including carbohydrates, alcohols, aromatics, organic acids, etc.) was equal to 60; the maximal signals were observed towards the anionic surfactants. The lower limit of detection for sodium dodecyl sulfate used as a model surfactant was in the field of 1 microM for all the strains. The created microbial biosensor model can extend the practical possibilities for rapid evaluation of surfactants in water media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号