首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
Laser-based microdissection facilitates the isolation of specific cell populations from clinical or animal model tissue specimens for molecular analysis. Expression microdissection (xMD) is a second-generation technology that offers considerable advantages in dissection capabilities; however, until recently the method has not been accessible to investigators. This protocol describes the adaptation of xMD to commonly used laser microdissection instruments and to a commercially available handheld laser device in order to make the technique widely available to the biomedical research community. The method improves dissection speed for many applications by using a targeting probe for cell procurement in place of an operator-based, cell-by-cell selection process. Moreover, xMD can provide improved dissection precision because of the unique characteristics of film activation. The time to complete the protocol is highly dependent on the target cell population and the number of cells needed for subsequent molecular analysis.  相似文献   

2.
BACKGROUND: Induced sputum, in contrast to bronchoscopic biopsies and lavages, is an easily obtained source of biological specimens. However, obtaining abnormal exfoliated cells for detailed molecular studies is limited because respiratory epithelial cells comprise only about 1% of sputum cell populations. METHODS: We developed a multiparameter flow sorting strategy to purify epithelial cells from nonepithelial sputum cells, using anti-cytokeratin antibody AE1/AE3 to recognize human epithelial cells and DAPI to stain DNA. We excluded cells with a high degree of side-scatter, which were composed predominantly of squamous cells and contaminating macrophages. The remaining cytokeratin-positive respiratory epithelial cells were then sorted based on anti-cytokeratin (PE) vs DNA (DAPI) parameters. RESULTS: In this proof of principle study, the AE1AE3 cytokeratin/DNA flow sorting strategy enriched rare diploid respiratory epithelial cells from an average of 1.1% of cells in unsorted induced sputum samples to average purities of 42%. Thus, AE1AE3 flow-sorting results in a 38-fold enrichment of these cells. CONCLUSIONS: We report a multiparameter flow cytometric assay to detect and enrich rare respiratory epithelial cells from induced sputum samples to average purities of 42%. With further development, this methodology may be useful as part of a molecular screening approach of populations at high risk for lung cancer.  相似文献   

3.
4.
Fresh circulating PBMC from HIV-1 seropositive individuals have been found to mediate specific, non-MHC restricted lysis of targets expressing the major envelope glycoprotein of HIV-1, gp120, in 6-h 51Cr release assays. This gp120 specific cell-mediated cytotoxicity (CMC) is broadly reactive against target cells infected with a wide range of viral isolates, is IL-2 augmentable, and is mediated by a CD16+, Leu-7+, CD15-, CD3- population of NK/K cells. The presence of FcR (CD16) on these cells suggested that the lytic specificity for gp120 might be directed by cytophilic antibody bound to the cell surface. Affinity purified F(ab')2 antibody fragments specific for the Fc and F(ab')2 portions of human IgG were used in attempts to block gp120 specific lysis. A 1/50 dilution of these antibodies inhibited gp120 specific cytolytic activity by more than 90% while exhibiting a minimal effect on NK/K cell lysis of K562 targets. The blocking activity of these fragments demonstrates the direct involvement of cytophilic antibody in CMC. In attempts to isolate this cytophilic anti-HIV-1 antibody, short 56 degrees C incubations were used to dissociate antibodies from the surface of PBMC of seropositive individuals. The supernatants generated in this manner exhibited specific gp120 activity in antibody-dependent cellular cytotoxicity assays. The ability of Staphylococcal protein A to remove this activity confirms the presence of cytophilic antibody on freshly isolated PBMC. Selective enrichment of specific cell subpopulations revealed the origin of the cytophilic antibody to be CD16+ NK/K cells and not B cells, T cells, or monocytes/macrophages. These studies show that the gp120-specific CMC seen in HIV-1 seropositive individuals is directed by cytophilic antibody bound to circulating CD16+ NK/K cells and represents a form of direct antibody-dependent cellular cytotoxicity which may provide a primary cytotoxic host defense.  相似文献   

5.
OBJECTIVE: To show that cellular preparations requiring depth analysis of different domains stained by molecular cytogenetic methods (fluorescence in situ hybridization and primed in situ) can be improved by regularized factor analysis of medical image sequences (FAMIS) to isolate fluorescent probes by means of intensity depth profiles of fluorochromes, to track relevant DNA sequences (cosmids and centromeres) in cell nuclei during interphase and to improve the use of cytogenetic techniques resulting in flat preparations of whole cells that are assumed to preserve probe access to their targets. STUDY DESIGN: 3D sequences of images obtained by depth displacement in a confocal microscope were first analyzed by the FAMIS algorithm, which provides factor curves. Factor images then resulted from regularization methods that improve signal/noise ratio while preserving target contours. RESULTS: Factor curves and regularized factor images helped analyze targets inside nuclei. CONCLUSION: It is possible to process preparations containing numerous spots (even when they are on different planes) to differentiate stained targets, to investigate depth differences and to improve visualization and detection.  相似文献   

6.
7.
Although Entamoeba histolytica is capable of inducing an apoptotic response in vertebrate cells in vitro (Cell. Microbiol. 2 (2000) 617), it is not known whether vertebrate cell death requires direct amoeba-vertebrate cell contact or simply the presence of amoebae in the area of the vertebrate cells. In addition, Entamoeba spp. vary in their virulence and pathogenicity. The potential effects of these critical parameters also have not been elucidated. We tested the virulent HM-1:IMSS isolate and the non-virulent Rahman isolate of E. histolytica, and the non-virulent E. dispar CYNO16:TPC isolate against two vertebrate cell lines, HeLa and Chinese hamster ovary cells in vitro using ethidium homodimer as a fluorescent indicator of changes in vertebrate cell permeability. Fluorescence appeared in vertebrate cell nuclei within approximately 2-3 min of contact between HM-1 amoebae and vertebrate cells independent of vertebrate cell type. However, vertebrate cells in the immediate vicinity of but not contacted by HM-1 amoebae were not affected. In contrast, although both E. histolytica Rahman and E. dispar CYNO16 amoebae moved freely among and contacted vertebrate cells, the nuclei of the vertebrate cells never fluoresced implying that the cells remained alive and impermeant to the ethidium homodimer. This is the first demonstration that direct contact between virulent amoebae and vertebrate cells is required to kill vertebrate cells and that the process is restricted to virulent Entamoeba isolates. An understanding at the molecular level of the processes involved could help to reduce the pathology associated with this parasite.  相似文献   

8.
Actively proliferating human retinal pigment epithelial (RPE) cells grown in tissue culture possess keratin-containing intermediate filaments that react with a combination of AE1 and AE3 anti-keratin monoclonal antibodies. Antibody reactivity is lost, however, from RPE cells as the cell population ceases to proliferate when it approaches confluence and attains morphological characteristics more similar to those in vivo. In contrast, clone 8.13 anti-keratin antibody stains all cells in the culture at all stages of the growth cycle and cell densities. These findings were reflected in vivo using retinal pigment epithelium taken directly from the eye. Normal non-proliferating RPE cells bound 8.13 antibody to cytoskeletal structures, as judged by indirect immunofluorescence, but did not bind AE1/AE3 antibodies. However, proliferating dedifferentiated RPE cells from the vitreous humor of patients with proliferative vitreoretinopathy possess filaments that bind both AE1/AE3 and 8.13 antibodies. Thus it appears that structures detected by AE1/AE3 antibodies only occur in actively growing RPE cells in vitro and in vivo. Keratins produced by RPE cells were identified using Western blotting. Species with molecular masses of 54 (keratin 7), 52 (keratin 8), 42 (keratin 18), and 40 (keratin 19) kiloDaltons were the most abundant in proliferating cultured cells, but cells isolated directly from the eye were found to lack keratin 7 and 19. Keratin 19 was, however, observed in proliferating RPE cells from some patients with proliferative vitreoretinopathy. The latter findings explain the differential staining observed with AE1/AE3 antibodies in cells in culture and isolated directly from the eye since these antibodies interact primarily with keratin 19 which is absent from non-proliferating RPE cells. In contrast to the presence of keratin-containing intermediate filaments in human RPE cells in vivo, there are apparently no detectable vimentin-containing cytoskeletal structures. However, all RPE cells cultured in vitro develop filaments composed of vimentin which persist in cells that have reached confluence.  相似文献   

9.
10.
11.
Chimeras were previously generated between the ecotropic (Moloney-MuLV) and amphotropic (4070A) SU and TM proteins of murine leukemia virus (MuLV). After passage in D17 cells, three chimeras with junctions in the C terminus of SU (AE5, AE6, and AE7), showed improved kinetics of viral spreading, suggesting that they had adapted. Sequencing of the viruses derived from the D17 cell lines revealed second-site changes within the env gene. Changes were detected in the receptor binding domain, the proline-rich region, the C terminus of SU, and the ectodomain of TM. Second-site changes were subcloned into the parental DNA, singly and in combination, and tested for viability. All viruses had maintained their original cloned mutations and junctions. Reconstruction and passage of AE7 or AE6 virus with single point mutations recovered the additional second-site changes identified in the parental population. The AE5 isolate required changes in the VRA, the VRC, the VRB-hinge region, and the C terminus of SU for efficient infection. Passage of virus, including the parental 4070A, in D17 cells resulted in a predominant G100R mutation within the receptor binding domain. Viruses were subjected to titer determination in three cell types, NIH 3T3, canine D17, and 293T. AE6 viruses with changes in the proline-rich region initially adapted for growth on D17 cells could infect all cell types tested. AE6-based chimeras with additional mutations in the C terminus of SU could infect D17 and 293T cells. Infection of NIH 3T3 cells was dependent on the proline-rich mutation. AE7-based chimeras encoding L538Q and G100R were impaired in infecting NIH 3T3 and 293T cells.  相似文献   

12.
Different types of multinucleated giant cells (MGC) have been documented in tumors with osteoclast-like appearance, with trophoblastic differentiation or as tumoral malignant giant cells. A new variety of MGC has been described in renal cell carcinoma. In order to study the frequency, nature and significance of this cellular type, we have reviewed our files. To assess the presence, nature and significance of these MGC in renal cell carcinomas and associated histologic subtype. To review all malignant renal tumors diagnosed in the last 5 years in our hospital and to carry out a morphologic and immunohistochemical study in renal cell carcinomas with syncytial type MGC. 55 renal cell carcinomas were reviewed. Clear cell (conventional) renal cell carcinoma was the most common type encountered (40 cases); two of these cases showed syncytial type MGC and low grade malignancy. Microscopically the MGC contained from 5 to 40 nuclei. Immunohistochemically, mononucleated and multinucleated cells were positive for cytokeratin CAM 5.2, cytokeratin AE1/AE3 and weakly positive for vimentin. Histiocytic, muscular, neural markers, beta-HCG and alpha-fetoprotein were negative. The presence of syncytial type MGC in renal cell carcinomas is an exceptional event. Among 55 renal cell carcinomas we found two cases, both of which were of clear cell subtype and low grade malignancy. The MGC proved positive for epithelial markers and probably are the result of mononucleated tumoral cell fusion. We are unaware of the impact of this MGC in the outcome of patients; such cells appear in low grade carcinomas and do not seem to be of dismal prognosis.  相似文献   

13.
Spontaneously occurring natural killer cell activity of rhesus monkey peripheral blood mononuclear cells was assayed against five human cell lines, three of which were Epstein-Barr virus (EBV) positive, including the human B cell line Raji. The lytic activity to Raji cells was high, significantly higher than to any other cell line tested. Raji cells are normally insensitive to spontaneous lysis by human NK cells, and the contrasting vigor of the rhesus monkey cytolytic activity to Raji prompted us to investigate the properties of this effector cell. We found the effector cell-mediating lysis of Raji to be nonadherent and phagocytic with lytic activity slightly enhanced in the E-rosette-forming cell (ERFC+) fraction and decreased in the ERFC- fraction. Further isolation of FcIgG receptor-positive and FcIgG receptor-negative subsets by rosetting resulted in significant enrichment of NK activity to Raji in the positive fraction and a loss of activity in the negative fraction. Depletion studies with various monoclonal antibodies (mAb's) confirmed that nearly all lytic activity was contained in the CD16+ (Leu 11b+) population, while subsets of effector cells expressed CD2 (9.6) and CD8 (OKT8). Depletion of CD4 (OKT4)-, HLADR (OKIa)-, or LFA1 (MAC-1)-positive populations failed to reduce NK activity. We compared the phenotypic properties of alloimmune effector cells exhibiting specificity for allogeneic donor targets with those exhibiting lysis of Raji targets. Results indicated that allospecific cytotoxic T lymphocytes expressed a CD16-, CD2+ phenotype, a pattern distinct from that of the effector cell population recognizing Raji targets. The presence of CD2 mAb's in the culture had no effect on NK lytic activity. In contrast, mAbs CD8 and Leu 11b were inhibitory. This would suggest a functional role for CD8 and FcIgG molecules in the lysis of Raji cells by rhesus effectors. In summary, these studies describe a distinct population of effector cells in the blood of rhesus monkeys which exhibit spontaneous lytic activity to Raji cells and exhibit the properties of NK cells.  相似文献   

14.
A key feature of precision medicine is that it takes individual variability at the genetic or molecular level into account in determining the best treatment for patients diagnosed with diseases detected by recently developed novel biotechnologies. The enrichment design is an efficient design that enrolls only the patients testing positive for specific molecular targets and randomly assigns them for the targeted treatment or the concurrent control. However there is no diagnostic device with perfect accuracy and precision for detecting molecular targets. In particular, the positive predictive value (PPV) can be quite low for rare diseases with low prevalence. Under the enrichment design, some patients testing positive for specific molecular targets may not have the molecular targets. The efficacy of the targeted therapy may be underestimated in the patients that actually do have the molecular targets. To address the loss of efficiency due to misclassification error, we apply the discrete mixture modeling for time-to-event data proposed by Eng and Hanlon [8] to develop an inferential procedure, based on the Cox proportional hazard model, for treatment effects of the targeted treatment effect for the true-positive patients with the molecular targets. Our proposed procedure incorporates both inaccuracy of diagnostic devices and uncertainty of estimated accuracy measures. We employed the expectation-maximization algorithm in conjunction with the bootstrap technique for estimation of the hazard ratio and its estimated variance. We report the results of simulation studies which empirically investigated the performance of the proposed method. Our proposed method is illustrated by a numerical example.  相似文献   

15.
Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the pathological changes associated with the disease involve necrosis and an infiltration of inflammatory cells into different regions of the heart and skeletal muscle. The aim of this work was to characterize cardiac changes and inflammatory cell types associated with a clinical HSMI outbreak in Atlantic salmon using immunohistochemistry. Different immune cells and cardiac tissue responses associated with the disease were identified using different markers. The spectrum of inflammatory cells associated with the cardiac pathology consisted of mainly CD3(+) T lymphocytes, moderate numbers of macrophages and eosinophilic granulocytes. Proliferative cell nuclear antigen (PCNA) immuno-reaction identified significantly increased nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. Strong immunostaining was observed for major histocompatibility complex (MHC) class II in HSMI hearts. Although low in number, a few positive cells in diseased hearts were detected using the mature myeloid cell line granulocytes/monocytes antibody indicating more positive cells in diseased than non-diseased hearts. The recombinant tumor necrosis factor-α (TNFα) antibody identified stained macrophage-like cells and endothelial cells around lesions in addition to eosinophilic granular cells (EGCs). These findings suggested that the inflammatory response in diseased hearts comprised of mostly CD3(+) T lymphocytes and eosinophilic granular cells and hearts exhibited high cell turnover where DNA damage/repair might be the case (as identified by PCNA, caspase 3 and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) reactivity).  相似文献   

16.
Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.  相似文献   

17.
Urotensin II is a neuropeptide first isolated from fish and later found in mammals: where it has potent cardiovascular, endocrine and behavioral effects. In rat brain the urotensin II receptor (UII-R) is predominately expressed in the cholinergic neurons of the pedunculopontine (PPTg) and laterodorsal tegmental nuclei. Typically, the function of the PPTg has been examined using excitotoxins, destroying both cholinergic and non-cholinergic neurons, which confounds interpretation. We took advantage of UII-R's unique expression profile, by combining UII with diphtheria toxin, to engineer a toxin specific for cholinergic neurons of the PPTg. In vitro, two different toxin constructs were shown to selectively activate UII-R (average EC50 approximately 30 nmol/L; calcium mobility assay) and to be 10,000-fold more toxic to UII-R expressing CHO cells, than wildtype cells (average LD50 approximately 2 nmol/L; cell viability). In vivo, pressure injection into the PPTg of rats, resulted in specific loss of choline transporter and NADPH diaphorase positive neurons known to express the UII-R. The lesions developed over time, resulting in the loss of over 80% of cholinergic neurons at 21 days, with little damage to surrounding neurons. This is the first highly selective molecular tool for the depletion of mesopontine cholinergic neurons. The toxin will help to functionally dissect the pedunculopontine and laterodorsal tegmental nuclei, and advance the understanding of the functions of these structures.  相似文献   

18.
We have devised conditions whereby non-tumorigenic, immunogenic cell variants of S49 mouse lymphoma were analyzed and separated from parental tumorigenic lymphoma cells. This was carried out using polyclonal antibodies (raised against the immunogenic variants) and immunomagnetic beads. The efficacy of the procedure depended on the amount of polyclonal antiserum, the immunobead to cell ratio, incubation time and the number of repetitions of the procedure. Experiments with mixed tumorigenic and non-tumorigenic cells have resulted in an enrichment of up to 200-fold of the non-tumorigenic, immunogenic cells in the population. These findings indicate the potential use of this procedure (in conjunction with other approaches) to isolate from a population of tumorigenic cells those variant cells that might be used to immunize against the parental tumor.  相似文献   

19.
H. Kataoka, T. K. Kobayashi, S. Amano, E. Yamada, M. Ishida, R. Kushima and H. Okabe Body cavity fluid can induce epithelial and mesothelial differentiation from CD34 positive peripheral blood stem cells in vitro Objective: Primary culture of CD34 positive stem cells collected from human peripheral blood was performed with and without supplementation with concentrated ascitic fluid; morphological and immunocytochemical pictures of cultured cells were taken chronologically and compared. Methods: CD34‐positive stem cells collected from peripheral blood were cultured for 1, 24 and 48 hours. Concentrated ascitic fluid was added to the plates for the 24‐and 48‐hour cultures. For immunocytochemical studies, CD34, AE1/AE3, Ber‐Ep4 (EA), EMA, EGFR, CD31, CA125 and D2‐40 monoclonal antibodies were used. Results: After culture, small round cells with naked nuclei began to enlarge and to exhibit various changes in the cytoplasm and nucleus. Supplementation with concentrated body cavity fluid enhanced these changes. CD34‐positive cells with small round cell features were detected 1 hour after culture and these had no epithelial or mesothelial markers. After 24 hours, CD34‐positive cells had disappeared and cells weakly positive for EGFR, EMA, CA125 and D2‐40 were detected. Cells with strong and moderate positive reactions for EGFR, AE1/AE3, EA, EMA, D2‐40 and CA125 were detected after 48 hours. Supplementation with concentrated body cavity fluid increased the intensity and number of positive cells for these markers compared with the control group. The positive reaction, not only for the epithelial markers such as EGFR and AE1/AE3, but also for mesothelial markers such as CA125 and D2‐40, was found to be increased in small numbers of cells in direct proportion to the duration of the primary culture of the peripheral blood cells. CD31, characteristically expressed in endothelial cells, was negative in the cultured cells. Conclusion: Supplementation of peripheral blood CD34‐positive stem cells with body cavity fluid in vitro enhanced their differentiation toward cells of an epithelial or mesothelial phenotype, concomitant with loss of immunoreactivity for CD34. It is assumed that the routine cytological observation of cells obtained from body cavity fluid might cause possible cytomorphological and immunophenotypical changes due to the action of the growth factors contained in the body cavity fluid.  相似文献   

20.
ObjectiveThe endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.MethodsNine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS) was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34 / CD105 / CD146) with the concomitant absence of leukocyte and platelet specific markers (CD11b / CD45). Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR).ResultsA median of 4,212 (IQR: 2161 – 6583) endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001), nitric oxide synthase 3 (NOS3, P<0.001) and vascular cell adhesion molecule 1 (VCAM-1, P<0.003) in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001).ConclusionThis state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号