首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

The chemical fractionation of lead, cobalt, chromium, nickel, zinc, cadmium and copper in soils around Lakwa oil field, Assam, India was studied using a sequential extraction method. It is evident from the study that the residual fraction is the most important phase for the seven heavy metals under study. Among non-residual fractions metals are mostly associated with the Fe–Mn oxides fraction. The association of heavy metals with organic matter was observed in the following order: copper> cadmium> zinc> lead. The concentration of Pb in the carbonate fraction for both the seasons is higher compared with other metals, which may pose environmental problems due to its highly toxic nature. The comparatively low concentration of metals in the exchangeable fraction indicates low bioavailability. Correlations between physicochemical parameters and metal fractions of soil do not show consistent behaviour. The local mean values of metals when compared with the accepted values of normal abundance and geochemical background, indicates two to four fold increases in this area. However, the values are within the range of normal abundance. As well as from natural soil geochemical behaviour, anthropogenic influence might have a close bearing on the association of metals with the soil system in the studied area.  相似文献   

2.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

3.
This study investigated the effects of biosurfactant produced by a mangrove isolate on a heavy metal spiked soil remediation using two different methods of biosurfactant addition (pretreatment and direct application) at different concentrations (0.5%–5%) for 10 days employing column and batch method of washings. The FT-IR spectral and biochemical analysis confirmed the chemical nature of biosurfactant as a glycolipid. Pre-addition of biosurfactant at 0.5% concentrations and further incubation for a month resulted in better chromium removal than the direct biosurfactant washing method. A maximum recovery of lead (99.77%), nickel (98.23%), copper (99.62%), and cadmium (99.71%) were achieved with column washing method at 1% biosurfactant concentration. Release of 26% soluble fractions of nickel (pre-addition with biosurfactant) and 40% copper (direct application) were achieved by column washing method at 1.0% concentration of biosurfactant. A total of 0.034 mg/10 g of lead, 0.157 mg/10 g of nickel, 0.022 mg/10 g of copper, 0.025 mg/10 g of cadmium, and 0.538 mg/10 g of chromium were found to remain in the spiked soil after column washing with 1.0% biosurfactant solution. However, pre-addition of 0.5% biosurfactant treatment helps in maximum removal of chromium metal leaving a residual concentration of 0.426 mg/10 g of soil, suggesting effective removal at very low concentration. The average extraction concentration of metals in batch washings was between 93–100%, irrespective of the concentration of biosurfactant studied. In this study, the percentage removal of copper, cadmium, chromium, nickel, and lead from spiked soils by column washing was comparatively lower than batch washing.  相似文献   

4.
Abstract

Metal fractionation is a powerful tool for studying the mobility, bioavailability and toxicity of metals in sediments and soils. A seven-step sequential extraction technique was used to determine the potential mobility of selected heavy metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni) in the sediments of Lake Naivasha. Results indicate that residual fraction was the most important phase for the elements Fe, Mn, Cu and Zn. However, Pb and Cd are highly enriched in the non-residual phases. Nickel on the other hand was distributed evenly between the non-residual and the residual fractions.

The total concentrations of the heavy metals suggested a decreasing order of iron ?> manganese ? zinc > nickel > copper ? lead > cadmium. However, the detailed sequential extraction data indicated an order of release or mobility of cadmium > lead ? nickel ? zinc > manganese > copper > iron. The high percentage of Cd and Pb in the mobile fractions suggests high bioavailability of these two elements in the study area and maybe a pointer to anthropogenic input of the two elements in the study area.  相似文献   

5.
Leaching column experiments were conducted to determine the degree of mobility and the distribution of zinc (Zn), cadmium (Cd), and lead (Pb) because of an application of spiked sewage sludge in calcareous soils. A total of 20 leaching columns were set up for four calcareous soils. Each column was leached with one of these inflows: sewage sludge (only for two soils), spiked sewage sludge, or artificial well water (control). The columns were irrigated with spiked sewage sludge containing 8.5 mg Zn l?1, 8.5 mg Cd l?1, and 170 mg Pb l?1 and then allowed to equilibrate for 30 days. At the end of leaching experiments, soil samples from each column were divided into 18 layers, each being 1 cm down to 6 cm and 2 cm below that, and analyzed for total and extractable Zn, Cd and Pb. The fractionation of the heavy metals in the top three layers of the surface soil samples was investigated by the sequential extraction method. Spiked sewage sludge had little effect on metal mobility. In all soils, the surface soil layers (0-1 cm) of the columns receiving spiked sewage sludge had significantly higher concentrations of total Zn, Cd and Pb than control soils. Concentration of the heavy metals declined significantly with depth. The mobility of Zn was usually greater than Cd and Pb. The proportion of exchangeable heavy metals in soils receiving spiked sewage sludge was significantly higher than that found in the control columns. Sequential extraction results showed that in native soils the major proportion of Zn and Pb was associated with residual (RES) and organic matter (OM) fractions and major proportion of Cd was associated with carbonate (CARB) fraction, whereas after leaching with spiked sewage sludge, the major proportion of Zn and Pb was associated with Fe-oxcide (FEO), RES, and CARB fractions and major proportion of Cd was associated with CARB, RES and exchangeable (EXCH) fractions. Based on relative percent, Cd in the EXCH fraction was higher than Zn and Pb in soils leached with spiked sewage sludge.  相似文献   

6.
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.  相似文献   

7.
Trace metals are components of releases to air emitted by copper and zinc production facilities in Canada. Six metals (copper, zinc, nickel, lead, cadmium, and arsenic) are examined as part of an overall environmental assessment of these releases. Estimates of metal deposition rates to soils and surface waters were derived from monitoring data in the vicinity of the production facilities and also through dispersion modelling studies. Fate and transport modelling of the metals deposited allowed an estimation of critical loads. Estimated annual deposition rates were compared with 25th-percentile critical loads typically representative of effects on sensitive organisms under 25% of conditions in sandy soils or circumneutral to acidic lake waters. The results of the comparison suggest that there is a potential for adverse effects on aquatic and/or soil-dwelling organisms from exposure to steadystate concentrations of metals in the vicinity of copper and zinc production facilities. Approaches of particular significance in these assessments include probabilistic estimation of critical loads for metals, allowance for the speciation of metals defining the bioavailable fraction and limiting critical effect levels to the high end of natural background metal concentrations.  相似文献   

8.
The status and transfer of metals across the rat placenta were studied by subcellular and molecular fractionations of this organ at 2 and 24 h after iv injection of radiolabeled metals. The soluble and nuclear fractions showed higher contents of copper and zinc, whereas most of the nickel was associated with the soluble fraction. Cadmium was almost evenly distributed between the microsomal and nuclear fractions. Gel filtration of the soluble fractions showed nickel associated with an unknown low molecular weight form; zinc with high molecular weight proteins; copper with metallothionein, ceruloplasmin, and high molecular weight proteins; and cadmium with high molecular weight proteins and metallothionein.  相似文献   

9.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

10.
Small arms firing ranges at military training facilities can have enormous heavy metal burdens (percent level) in soils. Currently there are few published works that quantify the metal content of soils and waters at military installations or speculate on the potential for migration of these contaminants into groundwater. This article documents metals in soils and waters at nine small arms training ranges at three military installations in the U.S. Soil samples were collected from the surface and shallow subsurface. The results demonstrated that lead, antimony, copper, and zinc were the principal contaminants of interest and mapping a site's lead and copper surface distributions would adequately define the extent of impacted soil. Lower metal concentrations at three of the ranges reflected previous remediation by means of physical separation and mechanical removal of metallic fragments followed by fixation treatment with MaectiteTM. Except for the treated ranges where mixing had occurred, subsurface soil samples indicated limited vertical migration. Several of the ranges were also monitored for trace element migration in the vadose zone by means of suction-cup lysimeters. This pore-water sampling indicated ceramic suction-cup lysimeters are useful for assessing relative concentrations but require care in evaluation because of potential sorption losses. Monitoring of soil water at ranges should include antimony and zinc; the former because, in contrast to the other metals, it is typically soluble in an anionic form, and the latter because of its greater solubility and mobility.  相似文献   

11.
We investigated the suitability of two aluminum-based binding agents, polynuclear Al13 and Al-coated montmorillonite (Al-mont-morillonite), for the immobilization of heavy metals in two contaminated agricultural soils: a loamy luvisol from an arable site in Rafz, Canton Zürich, Switzerland, and a sandy podsol from Szopienice, Upper Silesia, Poland. Both soils were polluted by lead, zinc, and cadmium: the soil from Szopienice by the emissions of a nearby zinc-lead smelter, and the soil from Rafz by sewage sludge applications. While the samples from Szopienice exhibited extremely high loads of these metals, the samples from Rafz were only moderately contaminated. The samples from both soils were slightly acidic. The Rafz soil contained 2.5% organic matter, that from Szopienice only 1.5%. Destruction of the organic matter in the Szopienice samples by H2O2 led to a significant release of Zn and Cd into solution. This indicated that organic matter is an important factor for the immobilization of heavy metals in this soil. The treatment of the Szopienice samples with 8?mmol Al13 per kg dry soil resulted in a considerable mobilization of the two metals. As the pH of the samples did not decrease, this effect was presumably due to direct interactions between the applied aluminium and organic matter. After destruction of soil organic matter, the two binding agents exhibited an immobilizing effect on Zn, which, however, was weak compared with the binding of the metal by the organic matter prior to its destruction. In the case of the Rafz samples, metal mobilization was observed only for Al13 if applied in high doses (4 and 8?mmol per kg soil), but not for Al-montmorillonite. In this soil, Al-montmorillonite as well as Al13 at low doses (1.2?mmol per kg soil and less) decreased soluble zinc concentrations significantly. The mobilization of metals at high doses of the applied binding agents and the dependence of this effect on the type of soil show that care has to be taken with this remediation method and that the proper doses of applied binding agents can be crucial for the success of metal immobilization in polluted soils.  相似文献   

12.
Heavy metal pollution of the soils around an abandoned Pb-Zn mine site located in the Alcudia Valley (South Central Spain) have been characterized by analysis of extractable and total metal concentrations in 60 samples of arable, pasture, and mine lands. The samples showed a broad range of size-particle distribution, cation exchange capacity, and pH values as well as high levels of total metal concentrations (up to 98510 mg kg?1 of Pb, up to 20912 mg kg?1 of Zn, and up to 61 mg kg?1 of Cd). In order to assess the potential availability of metals the metal partitioning in two different soil size fractions (<2 mm and <63 μm) was determined using EDTA and CaCl2 as sequestering reagents. The average contents of Pb, Zn, and Cd in the <63 μm particle size fraction for both extractions were higher than those of the <2 mm fraction due to the high metal adsorption capacity of the fine soil particles. Concentrations of heavy metals extracted by CaCl2 were up to three orders of magnitude lower than those extracted by EDTA, because CaCl2 only extracts the easily mobile fraction. Metal concentrations extracted by both procedures in the two granulometric fractions increased with total metal concentrations, thus increasing the potential environmental risk associated to heavy metal pollution.  相似文献   

13.
Lignin is a primary byproduct from the black liquor treatment in paper making industries, its application as micro-fertilizer in agricultural land might provide a promising alternative to sewage discharge. However, application of such a micro-fertilizer might affect the soil properties and result in soil pollution. In this study, the effects of lignin application on phytoavailability and speciation change of heavy metals in soils were investigated. Greenhouse experiments showed that lignin application improved the growth of winter wheat (Triticum aestivum L.) in all three soils investigated. The increase of the biomass for wheat shoot was 59.7%, 39.8% and 12.3% for Beijing soil, Jiangxi soil and Dongbei soil, respectively. In contrast, lignin amendment decreased the concentrations of heavy metals in wheat shoots from 2.2% to 61.0%. Sequential extraction procedure of a three-step BCR was used to investigate the fraction distribution. The extractable fractions were specified as fraction B1: water soluble, exchangeable and carbonate bound or weakly specifically adsorbed; B2: Fe-Mn oxide bound; B3: organic matter and sulfide bound. The results showed that lignin application led to the redistribution of heavy metals in each fraction. Generally, heavy metals decreased in B1 and B2 fractions and increased in B3 fraction. Upon the results short-term application of lignin in agricultural land not only improves the growth of wheat but also reduces the phyto-abailability of heavy metal in wheat.  相似文献   

14.
Summary Alfalfa (Medicago sativa L.), cv. Iroquois, was grown in the greenhouse in soils amended with additions of either lead, cadmium, or nickel. Metals, at rates varying from 0–250 ppm, were not uniformly mixed but were placed close to the soil surface so as to simulate surface deposition. In one series of experiments the sulphate salt of each metal and two soils were used. In a second series of experiments the nitrate salts and one soil were used. Neither salt of lead significantly depressed alfalfa yields. Both salts of either cadmium or nickel significantly depressed yields. Additions of all metals to the soil resulted in both increased metal uptake and concentrations in alfalfa tissue, particularly for cadmium and nickel. The highest tissue concentrations of cadmium and nickel were associated with plant stunting and necrosis. However, at rates of 125 ppm and less, substantial increases in cadmium and nickel concentrations were obtained frequently without serious yield reductions. Generally, metal concentrations were greatest in the first harvest following metal application. Concentration and uptake of lead and cadmium were greater when the metal was applied to the soil as nitrate than when applied as the sulphate salt.  相似文献   

15.
One of the problematic issues in soil pollution studies is heavy metal particles which are produced by mines and smelting units and spread through wind action and/or runoff. Pollution and health risk assessment of cadmium, lead, zinc, copper, and nickel in soil around the lead and zinc smelting factory was carried out in Zanjan City, Iran. Contamination factor (Cf), pollution load index (PLI), geoaccumulation index (Igeo), hazard quotient (HQ), hazard index (HI), and carcinogenic risk were pollution and human health risk assessment metrics in this study. Based on the Iranian soil guideline value, soil samples in the studied areas were contaminated the least by copper and nickel and the most by cadmium. PLI results showed that soils near the production line were heavily or extremely heavily polluted. The results of Cf and Igeo showed that lead and zinc were the most important contaminants. Health risk assessment indicated that lead and cadmium in soil were the main contaminants, which pose both carcinogenic and non-carcinogenic risks to human health; carcinogenic risk levels were unacceptably high (above 1 × 10?4). It can be concluded that mining and smelting activities degrade soil quality in this region and the soil pollution might be extended to farming areas.  相似文献   

16.
One of the most serious and long-term consequences of environmental pollution is heavy metal contamination of soils. Elements such as zinc, cadmium, lead, nickel, and chromium are being released into the environment by many industrial processes and have now reached concentrations that are of concern. Phytoremediation is a new, low-cost, and environmentally friendly technique that relies on the natural properties of some plants to clean-up the ground through their ability to take up metals from the soil. Hyperaccumulator plants, capable of accumulating metals far in excess of any normal physiological requirement, represent a most promising tool for metal phytoextraction, but the in field establishment of their conditions for utilization needs a long period because of the plant life-cycle. The use of a mathematical model is proposed to process growth and uptake data from in vitro experiments for a rapid assessment of the time and concentration parameters for the deployment of hyperaccumulator plants for phytoextraction purposes. This preliminary research has been carried out using Alyssum bertolonii Desv., a nickel hyperaccumulator endemic to Italian serpentine soils.  相似文献   

17.
Levels of nine heavy metals were measured in the livers and salt glands of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos) from Raritan Bay, New Jersey to determine if the functioning avian salt gland concentrates heavy metals. Heavy metals examined were cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel and zinc. Heavy metal levels varied significantly by species and tissue for chromium, copper, lead, and manganese, and by tissue for cobalt, mercury, nickel and zinc. In comparing tissues cobalt was higher in the salt glands than in livers of all three species; chromium and nickel were higher in the salt gland than liver for mallard and black duck; and lead, manganese and zinc were higher in the liver than the salt gland in greater scaup. Generally metal levels were higher in the salt gland for mallard and black duck, and in the liver for greater scaup.  相似文献   

18.
Contaminants such as heavy metals may contribute to the dissemination of antimicrobial resistance (AMR) by enriching resistance gene determinants via co-selection mechanisms. In the present study, a survey was performed on soils collected from four areas at the Savannah River Site (SRS), South Carolina, USA, with varying contaminant profiles: relatively pristine (Upper Three Runs), heavy metals (Ash Basins), radionuclides (Pond B) and heavy metal and radionuclides (Tim’s Branch). Using 16S rRNA gene amplicon sequencing, we explored the structure and diversity of soil bacterial communities. Sites with legacies of metal and/or radionuclide contamination displayed significantly lower bacterial diversity compared to the reference site. Metagenomic analysis indicated that multidrug and vancomycin antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) including those associated with copper, arsenic, iron, nickel and zinc were prominent in all soils including the reference site. However, significant differences were found in the relative abundance and diversity of certain ARGs and MRGs in soils with metal/radionuclide contaminated soils compared to the reference site. Co-occurrence patterns revealed significant ARG/MRG subtypes in predominant soil taxa including Acidobacteriaceae, Bradyrhizobium, Mycobacterium, Streptomyces, Verrumicrobium, Actinomadura and Solirubacterales. Overall, the study emphasizes the potential risk of human activities on the dissemination of AMR in the environment.  相似文献   

19.
Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and the addition of lime and potassium phosphate. Certain doses of inorganic additives decreased the easily exchangeable fraction from 50% to 1%. The addition of sewage sludge caused a decrease in fraction I for Cd and Pb. In combination with the use of inorganic additives, a mobile fraction was not detected and an easily mobilisable fraction was reduced by half. For certain combinations of metals, the concentrations were detected up to a few percent. The application of sewage sludge resulted in a slight decrease in a mobile (water soluble and easily exchangeable metals) fraction of Zn, but when inorganic additives were applied, this fraction was not detected. The highest degree of immobilisation of the tested heavy metals relative to the control was achieved when using both sewage sludge and inorganic additives at an experimentally determined dose. The sequential extraction results confirmed this result. In addition, the results proved that the use of the phytostabilisation process on contaminated soils should be supported.  相似文献   

20.
Bioavailability and mobility of heavy metals (HMs) in soils are determined by their partitioning between solution and solid-phase and their further redistribution among solid-phase components. A study was undertaken to determine the effects of organic matter (OM) and salinity on cadmium (Cd) and lead (Pb) distribution among soil fractions. Three agricultural soils were treated with 20 mg Cd/kg as Cd (NO3)2·4H2O, 150 mg Pb/kg as Pb (NO3)2, 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl, and then incubated at 60% water holding capacity (60% WHC) and constant temperature (25°C) for 12 weeks. Various fractions of Cd and Pb were extracted from the soils after 2 and 12 w of incubation using a sequential extraction technique. Results showed that in the early stage of incubation (2 w), added Pb were found mainly in the specifically sorbed (SS) and amorphous Fe oxides (AFeO) fractions and added Cd found in SS and Mn oxides (MnO) fractions. Addition of 2% OM decreased the exchangeable (EXC) Pb fraction almost in all soils, whereas it had a different effect on the EXC Cd fraction depending on soil pH. Addition of NaCl increased the EXC Cd fraction in two soils, but it did not alter Pb fractions. At the end of the incubation period, Pb decreased in the EXC and MnO fractions except in the neutral soil and Cd decreased mainly in the SS fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号