首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Listeria monocytogenes is an intracellular pathogen that is able to colonize the cytosol of macrophages. Here we examined the interaction of this pathogen with autophagy, a host cytosolic degradative pathway that constitutes an important component of innate immunity towards microbial invaders. L. monocytogenes infection induced activation of the autophagy system in macrophages. At 1 h post infection (p.i.), a population of intracellular bacteria ( approximately 37%) colocalized with the autophagy marker LC3. These bacteria were within vacuoles and were targeted by autophagy in an LLO-dependent manner. At later stages in infection (by 4 h p.i.), the majority of L. monocytogenes escaped into the cytosol and rapidly replicated. At these times, less than 10% of intracellular bacteria colocalized with LC3. We found that ActA expression was sufficient to prevent autophagy of bacteria in the cytosol of macrophages. Surprisingly, ActA expression was not strictly necessary, indicating that other virulence factors were involved. Accordingly, we also found a role for the bacterial phospholipases, PI-PLC and PC-PLC, in autophagy evasion, as bacteria lacking phospholipase expression were targeted by autophagy at later times in infection. Together, our results demonstrate that L. monocytogenes utilizes multiple mechanisms to avoid destruction by the autophagy system during colonization of macrophages.  相似文献   

2.
Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin‐based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin‐based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time‐lapse microscopy using green fluorescent protein‐LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin‐based motility moved away from LC3‐positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin‐based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.  相似文献   

3.
Listeria monocytogenes is an intracellular bacterial pathogen that can replicate in the cytosol of host cells. These bacteria undergo actin-based motility in the cytosol via expression of ActA, which recruits host actin-regulatory proteins to the bacterial surface. L. monocytogenes is thought to evade killing by autophagy using ActA-dependent mechanisms. ActA-independent mechanisms of autophagy evasion have also been proposed, but remain poorly understood. Here we examined autophagy of non-motile (ΔactA) mutants of L. monocytogenes strains 10403S and EGD-e, two commonly studied strains of this pathogen. The ΔactA mutants displayed accumulation of ubiquitinated proteins and p62/SQSTM1 on their surface. However, only strain EGD-e ΔactA displayed colocalization with the autophagy marker LC3 at 8 hours post infection. A bacteriostatic agent (chloramphenicol) was required for LC3 recruitment to 10403S ΔactA, suggesting that these bacteria produce a factor for autophagy evasion. Internalin K was proposed to block autophagy of L. monocytogenes in the cytosol of host cells. However, deletion of inlK in either the wild-type or ΔactA background of strain 10403S had no impact on autophagy evasion by bacteria, indicating it does not play an essential role in evading autophagy. Replication of ΔactA mutants of strain EGD-e and 10403S was comparable to their parent wild-type strain in macrophages. Thus, ΔactA mutants of L. monocytogenes can block killing by autophagy at a step downstream of protein ubiquitination and, in the case of strain EGD-e, downstream of LC3 recruitment to bacteria. Our findings highlight the strain-specific differences in the mechanisms that L. monocytogenes uses to evade killing by autophagy in host cells.  相似文献   

4.
《Autophagy》2013,9(1):132-133
Autophagy is a cell-autonomous mechanism of innate immunity that protects the cytosol against bacterial infection. Invasive bacteria, including Listeria monocytogenes, have thus evolved strategies to counteract a process that limits their intracellular growth. ActA is a surface protein produced by L. monocytogenes to polymerize actin and mediate intra- and intercellular movements, which plays a critical role in autophagy escape. We have recently investigated the role of another L. monocytogenes surface protein, the internalin InlK, in the infection process. We showed that in the cytosol of infected cells, InlK interacts with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoprotein particles named vaults. Although MVP has been implicated in a variety of key cellular process, its role remains elusive. We demonstrated that L. monocytogenes is able, via InlK, to decorate its surface with MVP in order to escape autophagic recognition. Strikingly, this new strategy used by L. monocytogenes to avoid autophagy is independent of ActA, suggesting that InlK-MVP interactions and actin polymerization are two processes that favor in the same manner the infection process. Understanding the role of MVP may provide new insights into bacterial infection and autophagy.  相似文献   

5.
《Autophagy》2013,9(2):117-125
Autophagy has been recently proposed to be a component of the innate cellular immune response against several types of intracellular microorganisms. However, other intracellular bacteria including Listeria monocytogenes have been thought to evade the autophagic cellular surveillance. Here, we show that cellular infection by L. monocytogenes induces an autophagic response, which inhibits the growth of both the wild-type and a delta actA mutant strain, the latter being impaired in cell-to-cell spreading. The onset of early intracellular growth is accelerated in autophagy-deficient cells, but the growth rate once bacteria begin to multiply in the cytosol does not change. Moreover, a significant fraction of the intracellular bacteria co-localize with autophagosomes at the early time-points after infection. Thus, autophagy targets L. monocytogenes during primary infection by limiting the onset of early bacterial growth. The bacterial expression of listeriolysin O but not phospholipases is necessary for the induction of autophagy, suggesting a possible role for permeabilization of the vacuole in the induction of autophagy. Interestingly, the growth of a delta plcA/B L. monocytogenes strain deficient for bacterial phospholipases is impaired in wild-type cells, but restored in the absence of autophagy, suggesting that bacterial phospholipases may facilitate the escape of bacteria from autophagic degradation. We conclude that L. monocytogenes are targeted for degradation by autophagy during the primary infection, in the early phase of the intracellular cycle, following listeriolysin O-dependent vacuole perforation but preceding active multiplication in the cytosol, and that expression of bacterial phospholipases is necessary for the evasion of autophagy.  相似文献   

6.
Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compartment harboring slow-growing bacteria that is associated with persistent infection. Here, we examined the host and bacterial factors that mediate LC3 recruitment to bacteria at 1 h postinfection. At this early time point, LC3+ bacteria were present within single-membrane phagosomes that are LAMP1+. Protein ubiquitination is known to play a role in targeting cytosolic L. monocytogenes to macroautophagy. However, we found that neither protein ubiquitination nor the ubiquitin-binding adaptor SQSTM1/p62 are associated with LC3+ bacteria at 1 h postinfection. Reactive oxygen species (ROS) production by the CYBB/NOX2 NADPH oxidase was also required for LC3 recruitment to bacteria at 1 h postinfection and for subsequent SLAP formation. Diacylglycerol is an upstream activator of the CYBB/NOX2 NADPH oxidase, and its production by both bacterial and host phospholipases was required for LC3 recruitment to bacteria. Our data suggest that the LC3-associated phagocytosis (LAP) pathway, which is distinct from macroautophagy, targets L. monocytogenes during the early stage of infection within host macrophages and allows establishment of an intracellular niche (SLAPs) associated with persistent infection.  相似文献   

7.
《Autophagy》2013,9(8):1220-1221
Autophagy is a pivotal bulk degradation system that eliminates undesirable molecules, damaged organelles, and misfolded protein aggregates in response to diverse stimuli, including infection. Autophagy acts to limit intracellular microbial growth but intracellular pathogens have evolved strategies to subvert host autophagic responses for their survival. We found that Listeria monocytogenes ActA, a surface protein required for actin polymerization and actin-based bacterial motility, plays a pivotal role in evading autophagy, but in a manner independent of bacterial motility. We show that L. monocytogenes exploits the biomimetic property of ActA to camouflage itself with host proteins comprised of Ena/VASP and the Arp2/3 complex, thereby escaping recognition by autophagy (Fig. 1).  相似文献   

8.

Background

Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection.

Methodology/Principal Findings

However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5−/−). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5−/− mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5−/− BMDMs.

Conclusions/Significance

We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs.  相似文献   

9.
《Autophagy》2013,9(3):368-371
Autophagy restricts the growth of a variety of intracellular pathogens. However, cytosol-adapted pathogens have evolved ways to evade restriction by this innate immune mechanism. Listeria monocytogenes is a Gram-positive bacterial pathogen that utilizes a cholesterol-dependent pore-forming toxin, listeriolysin O (LLO), to escape from the phagosome. Autophagy targets L. monocytogenes in LLO-damaged phagosomes and also in the cytosol under some experimental conditions. However, this bacterium has evolved multiple mechanisms to evade restriction by autophagy, including actin-based motility in the cytosol and an as yet undefined mechanism mediated by bacterial phospholipases C’s (PLCs). A population of L. monocytogenes with inefficient LLO activity forms Spacious Listeria-containing Phagosomes (SLAPs), which are autophagosome-like compartments that do not mature, allowing slow bacterial growth within enlarged vesicles. SLAPs may represent a stalemate between bacterial LLO action and the host autophagy system, resulting in persistent infection.

Addendum to: Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 2007; 3:442-51.andBirmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 2008; 451:350-4.  相似文献   

10.
Listeria monocytogenes is a rapidly growing, Gram‐positive, facultative intracellular pathogen that has been used for over 5 decades as a model to study basic aspects of infection and immunity. In a murine intravenous infection model, immunisation with a sublethal infection of L. monocytogenes initially leads to rapid intracellular multiplication followed by clearance of the bacteria and ultimately culminates in the development of long‐lived cell‐mediated immunity (CMI) mediated by antigen‐specific CD8+ cytotoxic T‐cells. Importantly, effective immunisation requires live, replicating bacteria. In this review, we summarise the cell and immunobiology of L. monocytogenes infection and discuss aspects of its pathogenesis that we suspect lead to robust CMI. We suggest five specific features of L. monocytogenes infection that positively impact the development of CMI: (a) the bacteria have a predilection for professional antigen‐presenting cells; (b) the bacteria escape from phagosomes, grow, and secrete antigens into the host cell cytosol; (c) bacterial‐secreted proteins enter the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation; (d) the bacteria do not induce rapid host cell death; and (e) cytosolic bacteria induce a cytokine response that favours CMI. Collectively, these features make L. monocytogenes an attractive vaccine vector for both infectious disease applications and cancer immunotherapy.  相似文献   

11.
Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection.  相似文献   

12.
Listeria monocytogenes, the causative agent of listeriosis, is an intracellular pathogen that is exquisitely evolved to survive and replicate in the cytosol of eukaryotic cells. Eukaryotic cells typically restrict bacteria from colonising the cytosol, likely through a combination of cell autonomous defences, nutritional immunity, and innate immune responses including induction of programmed cell death. This suggests that L. monocytogenes and other professional cytosolic pathogens possess unique metabolic adaptations, not only to support replication but also to facilitate resistance to host‐derived stresses/defences and avoidance of innate immune activation. In this review, we outline our current understanding of L. monocytogenes metabolism in the host cytosol and highlight major metabolic processes which promote intracellular replication and survival.  相似文献   

13.
Autophagy is a key innate immune response to intracellular parasites that promotes their delivery to degradative lysosomes following detection in the cytosol or within damaged vacuoles. Like Listeria and Shigella, which use specific mechanisms to avoid autophagic detection and capture, the bacterial pathogen Francisella tularensis proliferates within the cytosol of macrophages without demonstrable control by autophagy. To examine how Francisella evades autophagy, we screened a library of F. tularensis subsp. tularensis Schu S4 HimarFT transposon mutants in GFP‐LC3‐expressing murine macrophages by microscopy for clones localized within autophagic vacuoles after phagosomal escape. Eleven clones showed autophagic capture at 6 h post‐infection, whose HimarFT insertions clustered to fourgenetic loci involved in lipopolysaccharidic and capsular O‐antigen biosynthesis. Consistent with the HimarFT mutants, in‐frame deletion mutants of two representative loci, FTT1236 and FTT1448c (manC), lacking both LPS and capsular O‐antigen, underwent phagosomal escape but were cleared from the host cytosol. Unlike wild‐type Francisella, the O‐antigen deletion mutants were ubiquitinated, and recruited the autophagy adaptor p62/SQSTM1 and LC3 prior to cytosolic clearance. Autophagy‐deficient macrophages partially supported replication of both mutants, indicating that O‐antigen‐lacking Francisella are controlled by autophagy. These data demonstrate the intracellular protective role of this bacterial surface polysaccharide against autophagy.  相似文献   

14.
Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1?/?) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell‐to‐cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin‐based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response.  相似文献   

15.
Xenophagy has been studied in epithelial cells infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). Distinct autophagy receptors target this pathogen to degradation after interacting with ubiquitin on the surface of cytosolic bacteria, and the phagophore- and autophagosome-associated protein MAP1LC3/LC3. Glycans exposed in damaged phagosomal membranes and diacylglycerol accumulation in the phagosomal membrane also trigger S. Typhimurium xenophagy. How these responses control intraphagosomal and cytosolic bacteria remains poorly understood. Here, we examined S. Typhimurium interaction with autophagy in fibroblasts, in which the pathogen displays limited growth and does not escape into the cytosol. Live-cell imaging microscopy revealed that S. Typhimurium recruits late endosomal or lysosomal compartments that evolve into a membranous aggregate connected to the phagosome. Active dynamics and integrity of the phagosomal membrane are requisite to induce such aggregates. This membranous structure increases over time to become an aggresome that engages autophagy machinery at late infection times (> 6 h postentry). The newly formed autophagosome harbors LC3 and the autophagy receptor SQSTM1/p62 but is devoid of ubiquitin and the receptor CALCOCO2/NDP52. Live-cell imaging showed that this autophagosome captures and digests within the same vacuole the aggresome and some apposed intraphagosomal bacteria. Other phagosomes move away from the aggresome and avoid destruction. Thus, host endomembrane accumulation resulting from activity of intracellular S. Typhimurium stimulates a novel type of aggrephagy that acts independently of ubiquitin and CALCOCO2, and destroys only a few bacteria. Such selective degradation might allow the pathogen to reduce its progeny and, as a consequence, to establish persistent infections.  相似文献   

16.
CASP4/caspase-11-dependent inflammasome activation is important for the clearance of various Gram-negative bacteria entering the host cytosol. Additionally, CASP4 modulates the actin cytoskeleton to promote the maturation of phagosomes harboring intracellular pathogens such as Legionella pneumophila but not those enclosing nonpathogenic bacteria. Nevertheless, this non-inflammatory role of CASP4 regarding the trafficking of vacuolar bacteria remains poorly understood. Macroautophagy/autophagy, a catabolic process within eukaryotic cells, is also implicated in the elimination of intracellular pathogens such as Burkholderia cenocepacia. Here we show that CASP4-deficient macrophages exhibit a defect in autophagosome formation in response to B. cenocepacia infection. The absence of CASP4 causes an accumulation of the small GTPase RAB7, reduced colocalization of B. cenocepacia with LC3 and acidic compartments accompanied by increased bacterial replication in vitro and in vivo. Together, our data reveal a novel role of CASP4 in regulating autophagy in response to B. cenocepacia infection.  相似文献   

17.
《Autophagy》2013,9(6):744-753
Burkholderia pseudomallei is the causative agent of melioidosis, a tropical infection of humans and other animals. The bacterium is an intracellular pathogen that can escape from endosomes into the host cytoplasm, where it replicates and infects adjacent cells. We investigated the role played by autophagy in the intracellular survival of B. pseudomallei in phagocytic and non-phagocytic cell lines. Autophagy was induced in response to B. pseudomallei invasion of murine macrophage (RAW 264.7) cells and a proportion of the bacteria co-localized with the autophagy effector protein LC3, a marker for autophagosome formation. Pharmacological stimulation of autophagy in RAW 264.7 and murine embryonic fibroblast (MEF) cell lines resulted in increased co-localization of B. pseudomallei with LC3 while basal levels of co-localization could be abrogated using inhibitors of the autophagic pathway. Furthermore, induction of autophagy decreased the intracellular survival of B. pseudomallei in these cell lines, but bacterial survival was not affected in MEF cell lines deficient in autophagy. Treatment of infected macrophages with chloramphenicol increased the proportion of bacteria within autophagosomes indicating that autophagic evasion is an active process relying on bacterial protein synthesis. Consistent with this hypothesis, we identified a B. pseudomallei type III secreted protein, BopA, which plays a role in mediating bacterial evasion of autophagy. We conclude that the autophagic pathway is a component of the innate defense system against invading B. pseudomallei, but which the bacteria can actively evade. However, when autophagy is pharmacologically induced using rapamycin, bacteria are actively sequestered in autophagosomes, ultimately decreasing their survival.  相似文献   

18.
19.
Yersinia pseudotuberculosis is able to replicate inside macrophages. However, the intracellular trafficking of the pathogen after its entry into the macrophage remains poorly understood. Using in vitro infected bone marrow‐derived macrophages, we show that Y. pseudotuberculosis activates the autophagy pathway. Host cell autophagosomes subverted by bacteria do not become acidified and sustain bacteria replication. Moreover, we report that autophagy inhibition correlated with bacterial trafficking inside an acidic compartment. This study indicates that Y. pseudotuberculosis hijacks the autophagy pathway for its replication and also opens up new opportunities for deciphering the molecular basis of the host cell signalling response to intracellular Yersinia infection.  相似文献   

20.
Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life‐threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin‐binding adaptors p62 and NDP52 and the autophagosome membrane‐associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre‐infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号