首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production.1-3 Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012; 11:589-95; PMID:23122286; http://dx.doi.org/10.1016/j.stem.2012.10.005 Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 2012; 21:513-20; PMID:22066548; http://dx.doi.org/10.1089/scd.2011.0526 Suhr ST, Chang EA, Tjong J, Alcasid N, Perkins GA, Goissis MD, Ellisman MH, Perez GI, Cibelli JB. Mitochondrial rejuvenation after induced pluripotency. PLoS One 2010; 5:e14095; PMID:21124794; http://dx.doi.org/10.1371/journal.pone.0014095  However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance.  相似文献   

3.
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.  相似文献   

4.
Transgenic and gene targeting approaches have now been applied to a number of genes in order to investigate the metabolic disorders that would result by manipulating insulin action or pancreatic -cell function in the mouse. The availability of such mutant mice will allow in the future to develop animal models in which the pathophysiologies resulting from polygenic defects might be reconstituted and studied in detail. Such animal models hopefully will lead to better understanding of complex polygenic diseases such as non-insulin-dependent diabetes mellitus (NIDDM).  相似文献   

5.
Mitochondrial health is maintained by the quality control mechanisms of mitochondrial dynamics (fission and fusion) and mitophagy. Decline of these processes is thought to contribute to aging and neurodegenerative diseases. To investigate the role of mitochondrial quality control in aging on the cellular level, human umbilical vein endothelial cells (HUVEC) were subjected to mitochondria-targeted damage by combining staining of mitochondria and irradiation. This treatment induced a short boost of reactive oxygen species, which resulted in transient fragmentation of mitochondria followed by mitophagy, while mitochondrial dynamics were impaired. Furthermore, targeted mitochondrial damage upregulated autophagy factors LC3B, ATG5 and ATG12. Consequently these proteins were overexpressed in HUVEC as an in vitro aging model, which significantly enhanced the replicative life span up to 150% and the number of population doublings up to 200%, whereas overexpression of LAMP-1 did not alter the life span. Overexpression of LC3B, ATG5 and ATG12 resulted in an improved mitochondrial membrane potential, enhanced ATP production and generated anti-apoptotic effects, while ROS levels remained unchanged and the amount of oxidized proteins increased. Taken together, these data relate LC3B, ATG5 and ATG12 to mitochondrial quality control after oxidative damage, and to cellular longevity.  相似文献   

6.
Adoptive cell transfer (ACT) of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies (1). CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines (2-7). However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases (8-10). However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic (11-13), HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture (14-16). Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.  相似文献   

7.
Reactive oxygen species (ROS) are known to be involved in the pathogenesis of traumatic brain injury (TBI). Previous studies have shown that the susceptibility of mice to TBI-induced formation of cortical lesion is determined by the expression levels of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD, respectively). However, the underlying biochemical mechanisms are not understood. In this study, we measured the efficiency of mitochondrial respiration in mouse brains with altered expression of these two enzymes. While controlled cortical impact injury (CCII) with a deformation depth of 2 mm caused a drastic decrease in NAD-linked bioenergetic capacity in brain mitochondria of wild-type mice, the functional decrease was not observed in brains of littermate transgenic mice overexpressing CuZnSOD or MnSOD. In addition, a 1 mm CCII greatly compromised brain mitochondrial function in mice deficient in CuZnSOD or MnSOD, but not wild-type mice. Inclusion of the calcium-chelating agent, EGTA, in the assay solution could completely prevent dysfunction of oxidative phosphorylation in all mitochondrial samples, suggesting that the observed impairment of mitochondrial function was a result of calcium overloading. In conclusion, our results imply that mitochondrial dysfunction induced by superoxide anion radical contributes to lesion formation in mouse brain following physical trauma.  相似文献   

8.
Abstract

The immunophilins are an important group of regulatory molecules in the immune system. FKBP5, expressed throughout mammals and in fish and birds, functions in both physiological and pathogenic pathways, including innate immunity and steroid-based diseases. In this study, we cloned the first porcine FKBP5 from Rongchang pig by the rapid amplification of cDNA ends technique. The full-length cDNA is 4097?bp, with an open reading frame of 1371?bp that codes for a 457-aa protein. Western blotting detected the porcine FKBP5 protein at highest levels in thymus, followed by spleen and lung. Immunohistochemistry detected the porcine FKBP5 protein in lymphocytes and granulocytes of the blood, and flow cytometry identified greater expression in unactivated (vs. activated) T lymphocytes. Finally, the expression level of porcine FKBP5 in the granulocytes was found to decline significantly from the time of birth to one-year-old. These collective data suggest that the newly identified porcine FKBP5 may function in activation of T cells in pig and in innate immunity in the newborn pig in particular.  相似文献   

9.
10.
11.
12.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

13.
目的:探讨哮喘患者外周血调节性T细胞(Treg)以及辅助性T细胞(Th1/Th2)的比例的变化,探讨其在哮喘的临床治疗中的作用。方法:80例哮喘患者(哮喘组)按临床表现分为急性发作期组(54例)和缓解期组(26例),同时选择50例健康体检者。应用流式细胞仪检测上述各组外周血CD4+CD25+Foxp3+Treg、CD4+IFN-γ+Th1和CD4+IL-4+Th2细胞水平,并进行统计学分析。结果:哮喘组CD4+CD25+Foxp3+Treg水平亦明显低于正常对照组(P〈0.05。其中急性发作期组Treg水平明显低于缓解期组和正常对照组(P〈0.05)。而哮喘组Th1/Th2比值显著低于对照组(P〈0.05),且在哮喘急性发作组中Th1/Th2比值显著低于缓解期组和正常对照组(P〈0.05)。结论:提示Treg和Th在哮喘的发生和发展中起着重要的作用。  相似文献   

14.
Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes   总被引:17,自引:1,他引:17  
Chung Y  Yang X  Chang SH  Ma L  Tian Q  Dong C 《Cell research》2006,16(11):902-907
IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.  相似文献   

15.
The recent cloning of the special calcium channels TRPV5 and TRPV6 (transient receptor potential vanilloid channels) has provided a molecular basis for studying previously unidentified calcium influx channels in electrically nonexcitable cells. In the present work using RT-PCR, we obtained the endogenous expression of mRNAs of genes trpv5 and trpv6 in lymphoblast leukemia Jurkat cells and in normal human T lymphocytes. Additionally, by immunoblotting, the presence of the channel-forming TRPV5 proteins has been shown both in the total lysate and in crude membrane fractions from Jurkat cells and normal T lymphocytes. The use of immunoprecipitation revealed TRPV6 proteins in Jurkat cells, whereas in normal T lymphocytes, this protein was not detected. The expression pattern and the selective Ca2+ permeation properties of TRPV5 and TRPV6 channels indicate the important role of these channels in Ca2+ homeostasis, as well as most likely in malignant transformation of blood cells.  相似文献   

16.
CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.  相似文献   

17.
The molecular basis of T helper 1 and T helper 2 cell differentiation   总被引:34,自引:0,他引:34  
  相似文献   

18.
The pattern of expression of the simian virus 40 (SV40) T antigen gene and resultant dysplasia were re-examined in a line of transgenic mice in which the T antigen gene was under the control of the SV40 early promoter. We found that T antigen expression in the kidney, and resulting dysplastic lesions, occurred exclusively in the distal convoluted tubules and the ascending limbs of Henle. Epidermal growth factor (EGF) expression in the kidney of normal mice was similarly immunolocalized. The correlation between high EGF immunoreactivity in normal mouse tissues and T antigen expression in the transgenic counterpart was also seen in the choroid plexus epithelium and in the submandibular glands of male mice. T antigen was not found in the submandibular gland of transgenic females. Similarly, EGF was only rarely detected in the normal female submandibular gland. In contrast to the correlation between T antigen expression in the transgenic mice and EGF expression in the corresponding tissues of the normal mice, within the dysplastic lesions of the transgenic mice EGF expression was severely diminished. Adenocarcinomas of the male submandibular gland from another line of transgenic mice that expresses theInt-1 transgene, showed similarly reduced levels of immunostaining for EGF. Thus, reduced expression of EGF might be a general feature of dysplasia and tumorigenesis in those tissues that normally express EGF.  相似文献   

19.
Resident T lymphocytes have been found to exert helper and suppressor regulatory influences with regard to polyclonal activation of murine splenic B lymphocytes elicited by lipopolysaccharide. In the normal adult spleen, only T cell helper influences are exercised over polyclonal B cell activation. This activity is a property of Lyt 1+2- T cells and does not appear to be subject to MHC restriction. Suppressive influence evidently is either latent or it exists at such a low level that its effects are difficult to detect. No regulatory activity can be recovered from the supernatants of T cells, cultured either with or without LPS. However, suppressor T cell function may be evoked by activating splenic T cells with Concanavalin A or by sonicating unstimulated splenic T cells in order to liberate a suppressive potential which is not expressed by these unstimulated cells when intact. The soluble fraction of resident splenic T cell sonicates exerts both helper and suppressor regulatory influences. The soluble helper activity is derived from Lyt l+2- T cells, whereas suppressor activity is generated from Lyt 1-2+ T cells. The suppressive activity of T cell sonicates is not restricted by the MHC gene complex. Helper and suppressor activities contained in splenic T cell sonicates were separated by gel chromatography; the suppressive activity was found to elute with a molecular weight between 68,000 and 84,000 daltons, and the helper activity eluted with a molecular weight between 15,000 and 23,000 daltons. The data indicate that helper and suppressor activities are distinct molecular entities derived from distinct splenic T lymphocyte subpopulations. The possibility that these molecules are precursors to or components of antigen-specific or nonspecific helper and suppressor factors described in the literature is discussed.  相似文献   

20.
Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号