首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated the Hansenula polymorpha ATG25 gene, which is required for glucose-induced selective peroxisome degradation by macropexophagy. ATG25 represents a novel gene that encodes a 45 kDa coiled-coil protein. We show that this protein colocalizes with Atg11 on a small structure, which most likely represents the pre-autophagosomal structure (PAS). In cells of a constructed ATG25 deletion strain (atg25) peroxisomes are constitutively degraded by nonselective microautophagy, a process that in WT H. polymorpha is only observed at nitrogen limitation conditions. This suggests that nonselective microautophagy is deregulated in H. polymorpha atg25 cells.  相似文献   

2.
ATG genes are required for autophagy-related processes that transport proteins/organelles destined for proteolytic degradation to the vacuole. Here, we describe the identification and characterisation of the Hansenula polymorpha ATG21 gene. Its gene product Hp-Atg21p, fused to eGFP, had a dual location in the cytosol and in peri-vacuolar dots. We demonstrate that Hp-Atg21p is essential for two separate modes of peroxisome degradation, namely glucose-induced macropexophagy and nitrogen limitation-induced microautophagy. In atg21 cells subjected to macropexophagy conditions, sequestration of peroxisomes tagged for degradation is initiated but fails to complete.  相似文献   

3.
《Autophagy》2013,9(3):183-188
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisomal degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14pPi) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14pPi in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly and is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

4.
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisome degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14p(Pi)) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14p(Pi) in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly, because Pex14p is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

5.
《Autophagy》2013,9(1):17-20
Autophagy is a degradative pathway conserved among eukaryotes. It is a major route for degradation of long-lived proteins and entire organelles, such as peroxisomes. Atg26, a sterol glucosyltransferase, is specifically required for micro- and macropexophagy, but not for starvation-induced bulk autophagy in Pichia pastoris. Here we study the requirement of Saccharomyces cerevisiae Atg26 in the Cvt pathway, nonspecific autophagy and pexophagy. Our results show that the S. cerevisiae atg26? strain is not defective in prApe1 maturation, macroautophagy or peroxisome degradation, in contrast to the situation seen in Pichia pastoris. These studies highlight the importance of examining mutants in multiple organisms.  相似文献   

6.
The number of peroxisomes in a cell can change rapidly in response to changing environmental and physiological conditions. Pexophagy, a type of selective autophagy, is involved in peroxisome degradation, but its physiological role remains to be clarified. Here, we report that cells of the cucumber anthracnose fungus Colletotrichum orbiculare undergo peroxisome degradation as they infect host plants. We performed a random insertional mutagenesis screen to identify genes involved in cucumber pathogenesis by C. orbiculare. In this screen, we isolated a homolog of Pichia pastoris ATG26, which encodes a sterol glucosyltransferase that enhances pexophagy in this methylotrophic yeast. The C. orbiculare atg26 mutant developed appressoria but exhibited a specific defect in the subsequent host invasion step, implying a relationship between pexophagy and fungal phytopathogenicity. Consistent with this, its peroxisomes are degraded inside vacuoles, accompanied by the formation of autophagosomes during infection-related morphogenesis. The autophagic degradation of peroxisomes was significantly delayed in the appressoria of the atg26 mutant. Functional domain analysis of Atg26 suggested that both the phosphoinositide binding domain and the catalytic domain are required for pexophagy and pathogenicity. In contrast with the atg26 mutant, which is able to form appressoria, the atg8 mutant, which is defective in the entire autophagic pathway, cannot form normal appressoria in the earlier steps of morphogenesis. These results indicate a specific function for Atg26-enhanced pexophagy during host invasion by C. orbiculare.  相似文献   

7.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

8.
《Autophagy》2013,9(12):1514-1527
The implications of autophagy-related genes in serious neural degenerative diseases have been well documented. However, the functions and regulation of the family genes in embryonic development remain to be rigorously studied. Here, we report on for the first time the important role of atg5 gene in zebrafish neurogenesis and organogenesis as evidenced by the spatiotemporal expression pattern and functional analysis. Using morpholino oligo knockdown and mRNA overexpression, we demonstrated that zebrafish atg5 is required for normal morphogenesis of brain regionalization and body plan as well as for expression regulation of neural gene markers: gli1, huC, nkx2.2, pink1, β-synuclein, xb51 and zic1. We further demonstrated that ATG5 protein is involved in autophagy by LC3-II/LC3I ratio and rapamycin-induction experiments, and that ATG5 is capable of regulating expression of itself gene in the manner of a feedback inhibition loop. In addition, we found that expression of another autophagy-related gene, atg12, is maintained at a higher constant level like a housekeeping gene. This indicates that the formation of the ATG12–ATG5 conjugate may be dependent on ATG5 protein generation and its splicing, rather than on ATG12 protein in zebrafish. Importantly, in the present study, we provide a mechanistic insight into the regulation and functional roles of atg5 in development of zebrafish nervous system.  相似文献   

9.
We have isolated a peroxisome-degradation-deficient (pdd) mutant of the methylotrophic yeast Hansenula polymorpha via gene tagging mutagenesis. Sequencing revealed that the mutant was affected in the HpATG8 gene. HpAtg8 is a protein with high sequence similarity to both Pichia pastoris and Saccharomyces cerevisiae Atg8 and appeared to be essential for selective peroxisome degradation (macropexophagy) and nitrogen-limitation induced microautophagy. Fluorescence microscopy revealed that a GFP.Atg8 fusion protein was located close to the vacuole. After induction of macropexophagy, the GFP.Atg8 containing spot extended to engulf an individual peroxisome. In cells of a constructed deletion strain, sequestration of individual organelles was never completed; analysis of series of serial sections revealed that invariably a minor diaphragm-like opening remained. We hypothesize that H. polymorpha Atg8 facilitates sealing of the sequestering membranes during selective peroxisome degradation.  相似文献   

10.
11.
《Autophagy》2013,9(1):37-45
Yarrowia lipolytica was recently introduced as a new model organism to study peroxisome degradation in yeasts. Transfer of Y. lipolytica cells from oleate/ethylamine to glucose/ammonium chloride medium leads to selective macroautophagy of peroxisomes. To decipher the molecular mechanisms of macropexophagy we made use of Y. lipolytica tagged mutants affected in the inactivation of peroxisomal enzymes under pexophagy conditions, Ain16 and Ain19. Both strains appeared to be disrupted at two different sites of the same gene, YlTRS85, the ortholog of Saccharomyces cerevisiae TRS85 that encodes 85 kDa subunit of transport protein particle (TRAPP). Y. lipolytica trs85 mutants had multiple defects of protein transport to external medium, cell wall and vacuoles, indicating that YlTrs85 is indeed the ScTrs85 functional homologue, required early in the classical secretory pathway. Interestingly, peroxisomes were not able to reach vacuoles under pexophagy conditions in both Ain16 and Ain19 strains. Therefore, the essential role of the early secretory flow in selective macroautophagy of peroxisomes is suggested.  相似文献   

12.
PpAtg30 tags peroxisomes for turnover by selective autophagy   总被引:1,自引:0,他引:1  
Autophagy, an intrinsically nonselective process, can also target selective cargo for degradation. The mechanism of selective peroxisome turnover by autophagy-related processes (pexophagy), termed micropexophagy and macropexophagy, is unknown. We show how a Pichia pastoris protein, PpAtg30, mediates peroxisome selection during pexophagy. It is necessary for pexophagy, but not for other selective and nonselective autophagy-related processes. It localizes at the peroxisome membrane via interaction with peroxins, and during pexophagy it colocalizes transiently at the preautophagosomal structure (PAS) and interacts with the autophagy machinery. PpAtg30 is required for formation of pexophagy intermediates, such as the micropexophagy apparatus (MIPA) and the pexophagosome (Ppg). During pexophagy, PpAtg30 undergoes multiple phosphorylations, at least one of which is required for pexophagy. PpAtg30 overexpression stimulates pexophagy even under peroxisome-induction conditions, impairing peroxisome biogenesis. Therefore, PpAtg30 is a key player in the selection of peroxisomes as cargo and in their delivery to the autophagy machinery for pexophagy.  相似文献   

13.
Cao Y  Klionsky DJ 《Autophagy》2007,3(1):17-20
Autophagy is a degradative pathway conserved among eukaryotes. It is a major route for degradation of long-lived proteins and entire organelles, such as peroxisomes. Atg26, a sterol glucosyltransferase, is specifically required for micro- and macropexophagy, but not for starvation-induced bulk autophagy in Pichia pastoris. Here we study the requirement of Saccharomyces cerevisiae Atg26 in the Cvt pathway, nonspecific autophagy and pexophagy. Our results show that the S. cerevisiae atg26Delta strain is not defective in prApe1 maturation, macroautophagy or peroxisome degradation, in contrast to the situation seen in Pichia pastoris. These studies highlight the importance of examining mutants in multiple organisms.  相似文献   

14.
Autophagy and the ubiquitin proteasome system are the two major cellular processes for protein and organelle recycling and clearance in eukaryotic cells. Evidence is accumulating that these two pathways are interrelated through adaptor proteins. Here, we found that PSMD1 and PSMD2, both components of the 19S regulatory particle of the proteasome, directly interact with Dictyostelium discoideum autophagy 16 (ATG16), a core autophagosomal protein. ATG16 is composed of an N-terminal domain, which is responsible for homo-dimerization and binding to ATG5 and a C-terminal β-propeller structure. Deletion analysis of ATG16 showed that the N-terminal half of ATG16 interacted directly only with PSMD1, while the C-terminal half interacted with both, PSMD1 and PSMD2. RFP-tagged PSMD1 as well as PSMD2 were enriched in large puncta, reminiscent of autophagosomes, in wild-type cells. These puncta were absent in atg16 ̄ and atg9 ̄/16 ̄ cells and weaker and less frequent in atg9 ̄ cells, showing that ATG16 was crucial and the autophagic process important for their formation. Co-expression of ATG16-GFP or GFP-ATG8a(LC3) with RFP-PSMD1 or RFP-PSMD2, respectively, in atg16 ̄ or wild-type cells revealed many instances of co-localization, suggesting that RFP-PSMD1 or RFP-PSMD2 positive puncta constitute autophagosomes. LysoTracker® labeling and a proteolytic cleavage assay confirmed that PSMD1 and PSMD2 were present in lysosomes in wild-type cells. In vivo, ATG16 is required for their enrichment in ATG8a positive puncta, which mature into autolysosomes. We propose that ATG16 links autophagy and the ubiquitin proteasome system.  相似文献   

15.
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.  相似文献   

16.
《Autophagy》2013,9(8):863-872
Evidence is accumulating that damaged components of eukaryotic cells are removed by autophagic degradation (e.g., mitophagy). Here we show that peroxisomes that are damaged by the abrupt removal of the membrane protein Pex3 are massively and rapidly degraded even when the cells are placed at peroxisome-inducing conditions and hence need the organelles for growth. Pex3 degradation was induced by a temperature shift using Hansenula polymorpha pex3Δ cells producing a Pex3 fusion protein containing an N-terminal temperature sensitive degron sequence. The massive peroxisome degradation process, associated with Pex3 degradation, showed properties of both micro- and macropexophagy and was dependent on Atg1 and Ypt7. This mode of peroxisome degradation is of physiological significance as it was also observed at conditions that excessive ROS is formed from peroxisome metabolism, i.e., when methanol-grown wild-type cells are exposed to methanol excess conditions.  相似文献   

17.
《Autophagy》2013,9(4):375-385
Autophagy-related (Atg) pathways deliver cytosol and organelles to the vacuole in double-membrane vesicles called autophagosomes, which are formed at the phagophore assembly site (PAS), where most of the core Atg proteins assemble. Atg28 is a component of the core autophagic machinery partially required for all Atg pathways in Pichia pastoris. This coiled-coil protein interacts with Atg17 and is essential for micropexophagy. However, the role of Atg28 in micropexophagy was unknown. We used the yeast two-hybrid system to search for Atg28 interaction partners from P. pastoris and identified a new Atg protein, named Atg35. The atg35? mutant was not affected in macropexophagy, cytoplasm-to-vacuole targeting or general autophagy. However, both Atg28 and Atg35 were required for micropexophagy and for the formation of the micropexophagic apparatus (MIPA). This requirement correlated with a stronger expression of both proteins on methanol and glucose. Atg28 mediated the interaction of Atg35 with Atg17. Trafficking of overexpressed Atg17 from the peripheral ER to the nuclear envelope was required to organize a peri-nuclear structure (PNS), the site of Atg35 colocalization during micropexophagy. In summary, Atg35 is a new Atg protein that relocates to the PNS and specifically regulates MIPA formation during micropexophagy.  相似文献   

18.
Autophagy-related (Atg) pathways deliver cytosol and organelles to the vacuole in double-membrane vesicles called autophagosomes, which are formed at the phagophore assembly site (PAS), where most of the core Atg proteins assemble. Atg28 is a component of the core autophagic machinery partially required for all Atg pathways in Pichia pastoris. This coiled-coil protein interacts with Atg17 and is essential for micropexophagy. However, the role of Atg28 in micropexophagy was unknown. We used the yeast two-hybrid system to search for Atg28 interaction partners from P. pastoris and identified a new Atg protein, named Atg35. The atg35Δ mutant was not affected in macropexophagy, cytoplasm-to-vacuole targeting or general autophagy. However, both Atg28 and Atg35 were required for micropexophagy and for the formation of the micropexophagic apparatus (MIPA). This requirement correlated with a stronger expression of both proteins on methanol and glucose. Atg28 mediated the interaction of Atg35 with Atg17. Trafficking of overexpressed Atg17 from the peripheral ER to the nuclear envelope was required to organize a peri-nuclear structure (PNS), the site of Atg35 colocalization during micropexophagy. In summary, Atg35 is a new Atg protein that relocates to the PNS and specifically regulates MIPA formation during micropexophagy.Key words: Atg protein, peroxisome, micropexophagy, MIPA, nucleus  相似文献   

19.
The abundance of peroxisomes within a cell can rapidly decrease by selective autophagic degradation (also designated pexophagy). Studies in yeast species have shown that at least two modes of peroxisome degradation are employed, namely macropexophagy and micropexophagy. During macropexophagy, peroxisomes are individually sequestered by membranes, thus forming a pexophagosome. This structure fuses with the vacuolar membrane, resulting in exposure of the incorporated peroxisome to vacuolar hydrolases. During micropexophagy, a cluster of peroxisomes is enclosed by vacuolar membrane protrusions and/or segmented vacuoles as well as a newly formed membrane structure, the micropexophagy-specific membrane apparatus (MIPA), which mediates the enclosement of the vacuolar membrane. Subsequently, the engulfed peroxisome cluster is degraded. This review discusses the current state of knowledge of pexophagy with emphasis on studies on methylotrophic yeast species.  相似文献   

20.
Ribosomes account for a majority of the cell''s RNA and much of its protein and represent a significant investment of cellular resources. The turnover and degradation of ribosomes has been proposed to play a role in homeostasis and during stress conditions. Mechanisms for the turnover of rRNA and ribosomal proteins have not been fully elucidated. We show here that the RNS2 ribonuclease and autophagy participate in RNA turnover in Arabidopsis thaliana under normal growth conditions. An increase in autophagosome formation was seen in an rns2–2 mutant, and this increase was dependent on the core autophagy genes ATG9 and ATG5. Autophagosomes and autophagic bodies in rns2–2 mutants contain RNA and ribosomes, suggesting that autophagy is activated as an attempt to compensate for loss of rRNA degradation. Total RNA accumulates in rns2–2, atg9–4, atg5–1, rns2–2 atg9–4, and rns2–2 atg5–1 mutants, suggesting a parallel role for autophagy and RNS2 in RNA turnover. rRNA accumulates in the vacuole in rns2–2 mutants. Vacuolar accumulation of rRNA was blocked by disrupting autophagy via an rns2–2 atg5–1 double mutant but not by an rns2–2 atg9–4 double mutant, indicating that ATG5 and ATG9 function differently in this process. Our results suggest that autophagy and RNS2 are both involved in homeostatic degradation of rRNA in the vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号