首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Damaged or dysfunctional mitochondria are toxic to the cell by producing reactive oxygen species and releasing cell death factors. Therefore, timely removal of these organelles is critical to cellular homeostasis and viability. Mitophagy is the mechanism of selective degradation of mitochondria via autophagy. The significance of mitophagy in kidney diseases, including ischemic acute kidney injury (AKI), has yet to be established, and the involved pathway of mitophagy remains poorly understood. Here, we show that mitophagy is induced in renal proximal tubular cells in both in vitro and in vivo models of ischemic AKI. Mitophagy under these conditions is abrogated by Pink1 and Park2 deficiency, supporting a critical role of the PINK1-PARK2 pathway in tubular cell mitophagy. Moreover, ischemic AKI is aggravated in pink1 andpark2 single- as well as double-knockout mice. Mechanistically, Pink1 and Park2 deficiency enhances mitochondrial damage, reactive oxygen species production, and inflammatory response. Taken together, these results indicate that PINK1-PARK2-mediated mitophagy plays an important role in mitochondrial quality control, tubular cell survival, and renal function during AKI.  相似文献   

2.
Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPRmt) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.  相似文献   

3.
《Autophagy》2013,9(10):1462-1476
Reactive oxygen species (ROS) have been implicated as a signal for general autophagy. Both mitochondrial-produced and exogenous ROS induce autophagosome formation. However, it is unclear whether ROS are required for the selective autophagic degradation of mitochondria, a process called mitophagy. Recent work using carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial-uncoupling reagent, has been shown to induce mitophagy. However, CCCP treatment may not be biologically relevant since it causes the depolarization of the entire mitochondrial network. Since mitochondria are the main ROS production sites in mammalian cells, we propose that short bursts of ROS produced within mitochondria may be involved in the signaling for mitophagy. To test this hypothesis, we induced an acute burst of ROS within mitochondria using a mitochondrial-targeted photosensitizer, mitochondrial KillerRed (mtKR). Using mtKR, we increased ROS levels in the mitochondrial matrix, which resulted in the loss of membrane potential and the subsequent activation of PARK2-dependent mitophagy. Importantly, we showed that overexpression of the mitochondrial antioxidant protein, superoxide dismutase-2, can squelch mtKR-induced mitophagy, demonstrating that mitochondrial ROS are responsible for mitophagy activation. Using this assay, we examined the impact of mitochondrial morphology on mitophagy. It was shown recently that elongated mitochondria are more resistant to mitophagy through unknown mechanisms. Here, we show that elongated mitochondria are more resistant to ROS-induced damage and mitophagy compared with fragmented mitochondria, suggesting that mitochondrial morphology has an important role in regulating ROS and mitophagy. Together, our results suggest that ROS-induced mitochondrial damage may be an important upstream activator of mitophagy.  相似文献   

4.
Mutations in the PINK1 and PARK2/PARKIN genes are associated with hereditary early onset Parkinson disease (PD), and in cell lines the corresponding gene products play a critical role in mitophagic clearance of damaged mitochondria. In neurons, however, where the extraordinary cellular shapes pose particular challenges for maintaining healthy mitochondria, the pathways of mitophagy are less well understood. Both the location at which mitophagy occurs and the involvement of PINK1 and PARK2 have been controversial. Here we review our recent study where we found that selective damage to a subset of axonal mitochondria causes them to be engulfed within autophagosomes and cleared locally within the axon without the need for transport back to the soma. We also found this process to be completely dependent on neuronal PINK1 and PARK2.  相似文献   

5.
Although the PINK1-PARK2 pathway contributes to the pathogenesis of Parkinson disease, its roles in sepsis (a major challenge for critical care) were previously unknown. Here, we show that pink1?/? and park2?/? mice are more sensitive to polymicrobial sepsis-induced multiple organ failure and death. The decrease in the circulating level of the neurotransmitter dopamine in pink1?/? and park2?/? mice accelerates the release of a late sepsis mediator, HMGB1, via HIF1A-dependent anaerobic glycolysis and subsequent NLRP3-dependent inflammasome activation. Genetic depletion of Nlrp3 or Hif1a in pink1?/? and park2?/? mice confers protection against lethal polymicrobial sepsis. Moreover, pharmacological administration of dopamine agonist (e.g., pramipexole), HMGB1-inhibitor (e.g., neutralizing antibody or glycyrrhizin), or NLRP3-inhibitor (e.g., MCC950) reduces septic death in pink1?/? and park2?/? mice. The mRNA expression of HIF1A and NLRP3 is upregulated, whereas the mRNA expression of PINK1 and PARK2 is downregulated in peripheral blood mononuclear cells of patients with sepsis. Thus, an impaired PINK1-PARK2-mediated neuroimmunology pathway contributes to septic death and may represent a novel therapeutic target in critical care medicine.  相似文献   

6.
《Autophagy》2013,9(11):1687-1692
Mitochondrial homeostasis is critical to cellular homeostasis, and mitophagy is an important mechanism to eliminate mitochondria that are superfluous or damaged. Multiple events can be involved in the recognition of mitochondria by the phagophore, and the key one is the priming of the mitochondria with specific molecular signatures. PARK2/Parkin is an E3 ligase that can be recruited to depolarized mitochondria and is required for mitophagy caused by respiration uncoupling. PARK2 induces ubiquitination of mitochondrial outer membrane proteins, which are subsequently degraded by the proteasome. Why these PARK2-mediated priming events are necessary for mitophagy to occur is not clear. We propose that they are needed to prevent a default pathway that would be inhibitory to mitophagy. In the default pathway depolarized and fragmented mitochondria undergo a dramatic three-dimensional conformational change to become mitochondrial spheroids. This transformation requires mitofusins; however, PARK2 inhibits this process by causing mitofusin ubiquitination and degradation. The spherical transformation may prevent recognition of the damaged mitochondria by the autophagosome, and PARK2 ensures that no such transformation occurs in order to promote mitophagy. Whether the formed mitochondrial spheroids functionally represent an alternative mitigation to mitophagy or an adverse consequence in the absence of PARK2 has yet to be determined.  相似文献   

7.
8.
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

9.
《Autophagy》2013,9(4):631-641
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

10.
《Autophagy》2013,9(11):1770-1779
Mitochondrial dysfunction is a hallmark of aging and numerous human diseases, including Parkinson disease (PD). Multiple homeostatic mechanisms exist to ensure mitochondrial integrity, including the selective autophagic program mitophagy, that is activated during starvation or in response to mitochondrial dysfunction. Following prolonged loss of potential across the inner mitochondrial membrane (ΔΨ), PTEN-induced putative kinase 1 (PINK1) and the E3-ubiquitin ligase PARK2 work in the same pathway to trigger mitophagy of dysfunctional mitochondria. Mutations in PINK1 and PARK2, as well as PARK7/DJ-1, underlie autosomal recessive Parkinsonism and impair mitochondrial function and morphology. In a genome-wide RNAi screen searching for genes that are required for PARK2 translocation to the mitochondria, we identified ATPase inhibitory factor 1 (ATPIF1/IF1) as essential for PARK2 recruitment and mitophagy in cultured cells. During uncoupling, ATPIF1 promotes collapse of ΔΨ and activation of the PINK-PARK2 mitophagy pathway by blocking the ATPase activity of the F1-Fo ATP synthase. Restoration of ATPIF1 in Rho0 cells, which lack mtDNA and a functional electron transport chain, lowers ΔΨ and triggers PARK2 recruitment. Our findings identified ATPIF1 and the ATP synthase as novel components of the PINK1-PARK2 mitophagy pathway and provide genetic evidence that loss of ΔΨ is an essential trigger for mitophagy.  相似文献   

11.
The autophagy protein BECN1/Beclin 1 is known to play a central role in autophagosome formation and maturation. The results presented here demonstrate that BECN1 interacts with the Parkinson disease-related protein PARK2. This interaction does not require PARK2 translocation to mitochondria and occurs mostly in cytosol. However, our results suggest that BECN1 is involved in PARK2 translocation to mitochondria because loss of BECN1 inhibits CCCP- or PINK1 overexpression-induced PARK2 translocation. Our results also demonstrate that the observed PARK2-BECN1 interaction is functionally important. Measurements of the level of MFN2 (mitofusin 2), a PARK2 substrate, demonstrate that depletion of BECN1 prevents PARK2 translocation-induced MFN2 ubiquitination and loss. BECN1 depletion also rescues the MFN2 loss-induced suppression of mitochondrial fusion. In sum, our results demonstrate that BECN1 interacts with PARK2 and regulates PARK2 translocation to mitochondria as well as PARK2-induced mitophagy prior to autophagosome formation.  相似文献   

12.
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild‐type but not PD‐linked mutant parkin supports the biogenesis of a population of mitochondria‐derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin‐ and PINK1‐dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD.  相似文献   

13.
In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2β-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.  相似文献   

14.
Mitophagy is a highly specialized process to remove dysfunctional or superfluous mitochondria through the macroautophagy/autophagy pathway, aimed at protecting cells from the damage of disordered mitochondrial metabolism and apoptosis induction. PINK1, a neuroprotective protein mutated in autosomal recessive Parkinson disease, has been implicated in the activation of mitophagy by selectively accumulating on depolarized mitochondria, and promoting PARK2/Parkin translocation to them. While these steps have been characterized in depth, less is known about the process and site of autophagosome formation upon mitophagic stimuli. A previous study reported that, in starvation-induced autophagy, the proautophagic protein BECN1/Beclin1 (which we previously showed to interact with PINK1) relocalizes at specific regions of contact between the endoplasmic reticulum (ER) and mitochondria called mitochondria-associated membranes (MAM), from which the autophagosome originates. Here we show that, following mitophagic stimuli, autophagosomes also form at MAM; moreover, endogenous PINK1 and BECN1 were both found to relocalize at MAM, where they promoted the enhancement of ER-mitochondria contact sites and the formation of omegasomes, that represent autophagosome precursors. PARK2 was also enhanced at MAM following mitophagy induction. However, PINK1 silencing impaired BECN1 enrichment at MAM independently of PARK2, suggesting a novel role for PINK1 in regulating mitophagy. MAM have been recently implicated in many key cellular events. In this light, the observed prevalent localization of PINK1 at MAM may well explain other neuroprotective activities of this protein, such as modulation of mitochondrial calcium levels, mitochondrial dynamics, and apoptosis.  相似文献   

15.
The E3 ubiquitin ligase PARK2 and the mitochondrial protein kinase PINK1 are required for the initiation of mitochondrial damage-induced mitophagy. Together, PARK2 and PINK1 generate a phospho-ubiquitin signal on outer mitochondrial membrane proteins that triggers recruitment of the autophagy machinery. This paper describes the detection of a defined 500-kDa phospho-ubiquitin-rich PARK2 complex that accumulates on mitochondria upon treatment with the membrane uncoupler CCCP. Formation of this complex is dependent on the presence of PINK1 and is absent in mutant forms of PARK2, whereby mitophagy is also arrested. These results signify a functional signaling complex that is essential for the progression of mitophagy. The visualization of the PARK2 signaling complex represents a novel marker for this critical step in mitophagy and can be used to monitor mitophagy progression in PARK2 mutants and to uncover additional upstream factors required for PARK2-mediated mitophagy signaling.  相似文献   

16.
Mutations in phosphatase and tensin homologue-induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD-linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA-mediated interference (RNAi)-based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin-associated rhomboid-like protease (PARL), m-AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway.  相似文献   

17.
Cai Q  Zakaria HM  Sheng ZH 《Autophagy》2012,8(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

18.
《Autophagy》2013,9(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

19.
Here, we present a summary of our recent findings on the (patho-)physiological relevance of PINK1-phosphorylated ubiquitin (p-S65-Ub). Using novel polyclonal antibodies, we find that p-S65-Ub specifically accumulates on damaged mitochondria. Phosphorylation of ubiquitin on serine 65 depends on the activity of PINK1 and the signal is vastly amplified by the activity of the E3 ubiquitin ligase PARK2/Parkin in a feed-forward loop. The induction of p-S65-Ub in primary cells suggests a significant role of p-S65-Ub also in neurons. Consistent with a marker for damaged mitochondria that are undergoing mitophagy, we find anti-p-S65-Ub immunoreactive granules that partially colocalize with mitochondria, lysosomes and ubiquitin in human post-mortem brain. The number of p-S65-Ub positive granules increases with age and with PD, highlighting the relevance of p-S65-Ub as a potential biomarker and therapeutic target.  相似文献   

20.
Parkinson's disease (PD), the most prevalent neurodegenerative movement disorder, is characterized by an age-dependent selective loss of dopaminergic (DA) neurons. Although most PD cases are sporadic, more than 20 responsible genes in familial cases were identified recently. Genetic studies using Drosophila models demonstrate that PINK1, a mitochondrial kinase encoded by a PD-linked gene PINK1, is critical for maintaining mitochondrial function and integrity. This suggests that mitochondrial dysfunction is the main cause of PD pathogenesis. Further genetic and cell biological studies revealed that PINK1 recruits Parkin, an E3 ubiquitin ligase encoded by another PD-linked gene parkin, to mitochondria and regulates the mitochondrial remodeling process via the Parkin-mediated ubiquitination of various mitochondrial proteins. PINK1 also directly phosphorylates the mitochondrial proteins Miro and TRAP1, subsequently inhibiting mitochondrial transport and mitochondrial oxidative damage, respectively. Moreover, recent Drosophila genetic analyses demonstrate that the neuroprotective molecules Sir2 and FOXO specifically complement mitochondrial dysfunction and DA neuron loss in PINK1 null mutants, suggesting that Sir2 and FOXO protect mitochondria and DA neurons downstream of PINK1. Collectively, these recent results suggest that PINK1 plays multiple roles in mitochondrial quality control by regulating its mitochondrial, cytosolic, and nuclear targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号