首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paglin S  Yahalom J 《Autophagy》2006,2(4):291-293
In addition to their role in cellular homeostasis, pathways that regulate autophagy affect both tumorigenesis and tumor response to treatment. Therefore, understanding the regulation of autophagy in treated cancer cells is relevant to the discovery of molecular targets for the development of anti-cancer drugs. Our recent report points to radiation-induced inactivation of the mTOR pathway as an underlying mechanism of radiation-induced autophagy in the human breast cancer cell line MCF-7. Most importantly, radiation-induced inactivation of this pathway was detrimental to cell survival and was associated with reversal of mitochondrial ATPase activity and mitochondrial hyperpolarization, decreased level of eukaryotic initiation factor 4G (eIF4G) and increased phosphorylation of p53. Future analysis of the interrelationship among these events and the role each of them plays in cell survival following radiation will increase our ability to employ the mTOR pathway in anti-cancer therapy.  相似文献   

2.
The PI3K/Akt/mTOR signaling pathway plays a key regulatory function in cell survival, proliferation, migration, metabolism and apoptosis. Aberrant activation of the PI3K/Akt/mTOR pathway is found in many types of cancer and thus plays a major role in breast cancer cell proliferation. In our previous studies, benzo[b]furan derivatives were evaluated for their anticancer activity and the lead compounds identified were 26 and 36. These observations prompted us to investigate the molecular mechanism and apoptotic pathway of these lead molecules against breast cancer cells. Benzo[b]furan derivatives (26 and 36) were evaluated for their antiproliferative activity against human breast cancer cell lines MCF-7 and MDA MB-231. These compounds (26 and 36) have shown potent efficiency against breast cancer cells (MCF-7) with IC50 values 0.057 and 0.051 μM respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. Western blot analysis revealed that these compounds inhibit the PI3K/Akt/mTOR signaling pathway and induced mitochondrial mediated apoptosis in human breast cancer cells (MCF-7).  相似文献   

3.
《Autophagy》2013,9(4):294-296
Elongation factor-2 kinase (eEF-2 kinase; Ca2+/calmodulin-dependent kinase III) controls the rate of peptide chain elongation. The activity of eEF-2 kinase is increased in many malignancies, yet its precise function in carcinogenesis remains unknown. Autophagy, a well-defined survival pathway in yeast, may also play an important role in oncogenesis. Furthermore, the autophagic response to nutrient deprivation is regulated by the mammalian target of rapamycin (mTOR). eEF-2 kinase lies downstream of mTOR and is regulated by several kinases in this pathway. Therefore, we studied the role of eEF-2 kinase in autophagy. Knockdown of eEF-2 kinase by RNA interference inhibited autophagy in several cell types as measured by light chain 3 (LC3)-II formation, acidic vesicular organelle staining, and electron microscopy. In contrast, overexpression of eEF-2 kinase increased autophagy. Furthermore, inhibition of autophagy markedly decreased the viability of glioblastoma cells grown under conditions of nutrient depletion, which increased eEF-2 kinase activity and decreased the activity of S6 kinase, suggesting an involvement of mTOR pathway in the eEF-2 kinase-mediated regulation of autophagy. These results suggest that eEF-2 kinase plays a regulatory role in the autophagic process in tumor cells and may promote cancer cell survival under conditions of nutrient deprivation. Therefore, eEF-2 kinase activation may be a part of a survival mechanism in glioblastoma, and targeting this kinase may represent a novel approach to cancer treatment.

Addendum to:

Elongation Factor-2 Kinase Regulates Autophagy in Human Glioblastoma Cells

H. Wu, J.-M. Yang, S. Jin, H. Zhang and W.N. Hait

Cancer Res 2006; 66:3015-23  相似文献   

4.
《Autophagy》2013,9(2):142-144
Bax and Bak, act as a gateway for caspase-mediated cell death. mTOR, an Akt downstream effector, plays a critical role in cell proliferation, growth and survival. The inhibition of mTOR induces autophagy, whereas apoptosis is a minor cell death mechanism in irradiated solid tumors.

We explored possible alternative pathways for cell death induced by radiation in Bax/Bak-/- double knockout (DKO) MEF cells and wild-type cells, and we compared the cell survival: the Bax/Bak-/- cells were more radiosensitive than the wild-type cells. The irradiated cells displayed an increase in the pro-autophagic proteins ATG5-ATG12 and Beclin-1.

These results are surprising in the fact that the inhibition of apoptosis resulted in increasing radiosensitivity; indicating that perhaps autophagy is the cornerstone in the cell radiation sensitivity regulation. Furthermore, irradiation up-regulates autophagic programmed cell death in cells that are unable to undergo Bax/Bak-mediated apoptosis. We hypothesize the presence of a phosphatase—possibly PTEN, an Akt/mTOR negative regulator that can be inhibited by Bax/Bak. This fits with our hypothesis of Bax/Bak as a down-regulator of autophagy.

We are currently conducting experiments to explore the relationship between apoptosis and autophagy. Future directions in research include strategies targeting Bax/Bak in cancer xenografts and exploring novel radiosensitizers targeting autophagy pathways.

Addendum to:

Autophagy for Cancer Therapy through Inhibition of Proapoptotic Proteins and mTOR Signaling

K.W. Kim, R.W. Mutter, C. Cao, J.M. Albert, M. Freeman, D.E. Hallahan and B. Lu

J Biol Chem 2006; Epub ahead of print  相似文献   

5.
A unique feature of cancer cells is to convert glucose into lactate to produce cellular energy, even under the presence of oxygen. Called aerobic glycolysis [The Warburg Effect] it has been extensively studied and the concept of aerobic glycolysis in tumor cells is generally accepted. However, it is not clear if aerobic glycolysis in tumor cells is fixed, or can be reversed, especially under therapeutic stress conditions. Here, we report that mTOR, a critical regulator in cell proliferation, can be relocated to mitochondria, and as a result, enhances oxidative phosphorylation and reduces glycolysis. Three tumor cell lines (breast cancer MCF-7, colon cancer HCT116 and glioblastoma U87) showed a quick relocation of mTOR to mitochondria after irradiation with a single dose 5 Gy, which was companied with decreased lactate production, increased mitochondrial ATP generation and oxygen consumption. Inhibition of mTOR by rapamycin blocked radiation-induced mTOR mitochondrial relocation and the shift of glycolysis to mitochondrial respiration, and reduced the clonogenic survival. In irradiated cells, mTOR formed a complex with Hexokinase II [HK II], a key mitochondrial protein in regulation of glycolysis, causing reduced HK II enzymatic activity. These results support a novel mechanism by which tumor cells can quickly adapt to genotoxic conditions via mTOR-mediated reprogramming of bioenergetics from predominantly aerobic glycolysis to mitochondrial oxidative phosphorylation. Such a “waking-up” pathway for mitochondrial bioenergetics demonstrates a flexible feature in the energy metabolism of cancer cells, and may be required for additional cellular energy consumption for damage repair and survival. Thus, the reversible cellular energy metabolisms should be considered in blocking tumor metabolism and may be targeted to sensitize them in anti-cancer therapy.  相似文献   

6.
7.
8.
Eldecalcitol (ED-71) is a new type of vitamin D analog, and vitamin D has been reported to have therapeutic effects in infectious disease, autoimmune disease, and cancer. However, the anti-cancer effect of ED-71 remains unclear. The objective of this study was to explore the anti-cancer effect of ED-71 in human osteosarcoma cells and to identify the related mechanism. The CCK8 assay results showed that ED-71 inhibited MG-63 cell viability in dose and time dependent manners. Cloning and Transwell invasion assays showed that ED-71 inhibited clonal and invasion ability of MG-63 cells. Flow cytometry results showed ED-71 the G2/M cycle arrest rate, apoptosis, and intracellular ROS. Western blot was used to detect cleaved-caspase-3, Bax, Bcl-2, LC3-II/LC3-I, and P62 levels and the mTOR pathway. The increase of LC3-II and P62 indicated that ED-71 induced the formation of autophagosomes and inhibited autophagy flux. Furthermore, ED-71-induced apoptosis was weakened after adding 3-methyladenine and ED-71-induced early autophagy was weakened by caspase-3 inhibitor (Z-VAD-FMK), which indicated the two processes active each other in the presence of ED-71. Furthermore, N-acetylcysteine (NAC) pretreatment reversed the ED-71-treatment outcomes, including increased apoptosis and autophagy and inhibition of the PI3K/Akt/mTOR pathway. In conclusion, our results reveal that ED-71 induced G2/M arrest, apoptosis and autophagy in MG-63 cells by accumulating ROS to suppress the PI3K/Akt/mTOR signaling pathway  相似文献   

9.
《Autophagy》2013,9(5):468-471
Autophagy is a vacuolar process leading to the degradation of long-lived proteins and cytoplasmic organelles in eukaryotes. This process has an important role in normal and cancer cells during adaptation to changing environmental conditions, cellular and tissue remodeling, and cell death.

To date, several signaling cascades have been described to regulate autophagy in a cell type-specific and signal-dependent manner.

We found that pharmacological blockade of the p38 pathway in colorectal cancer cells, either by the inhibitor SB202190 or by genetic ablation of p38α kinase, causes cell cycle arrest and autophagic cell death. In these cells, a complex network of intracellular kinase cascades controls autophagy and survival since the effect of p38α blockade is differentially affected by the pharmacological inhibition of MEK1, PI3K class I and III, and mTOR or by the differentiation status.

Collectively, our results suggest an opportunity for exploiting the pharmacological manipulation of the p38α pathway in the treatment of colorectal cancer. Given the number of drugs, currently available or under development, that target the p38 pathway, it stands to reason that elucidating the molecular mechanisms that link p38 and autophagy might have an impact on the clinical translation of these drugs.

Addendum to:

A Novel Cell Type-Specific Role of p38α in the Control of Autophagy and Cell Death in Colorectal Cancer Cells

F. Comes, A. Matrone, P. Lastella, B. Nico, F.C. Susca, R. Bagnulo, G. Ingravallo, S. Modica, G. Lo Sasso, A. Moschetta, G. Guanti and C. Simone

Cell Death Differ 2007; 14: 693-702  相似文献   

10.
Autophagy is considered as an important cell death mechanism that closely interacts with other common cell death programs like apoptosis. Critical role of autophagy in cell death makes it a promising, yet challenging therapeutic target for cancer. We identified a series of 1,2,3-triazole analogs having significant breast cancer inhibition property. Therefore, we attempted to study whether autophagy and apoptosis were involved in the process of cancer cell inhibition. The lead molecule, 1-(1-benzyl-5-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)-2-(4-bromophenylamino)-1-(4-chlorophenyl)ethanol (T-12) induced significant cell cycle arrest, mitochondrial membrane depolarization, apoptosis and autophagy in MCF-7 and MDA-MB-231 cells. T-12 increased reactive oxygen species and its inhibition by N-acetyl-l-cysteine protected breast cancer cells from autophagy and apoptosis. Autophagy inhibitor, 3-methyladenine abolished T-12 induced apoptosis, mitochondrial membrane depolarization and reactive oxygen species generation. This suggested that T-12 induced autophagy facilitated cell death rather than cell survival. Pan-caspase inhibition did not abrogate T-12 induced autophagy, suggesting that autophagy precedes apoptosis. In addition, T-12 inhibited cell survival pathway signaling proteins, Akt, mTOR and Erk1/2. T-12 also induced significant regression of tumor with oral dose of as low as 10 mg/kg bodyweight in rat mammary tumor model without any apparent toxicity. In presence of reactive oxygen species inhibitor (N-acetyl-l-cysteine) and autophagy inhibitor (chloroquine), T-12 induced tumor regression was significantly decreased. In conclusion, T-12 is a potent inducer of autophagy-dependent apoptosis in breast cancer cells both in vitro and in vivo and can serve as an important lead in development of new anti-tumor therapy.  相似文献   

11.
《Free radical research》2013,47(4):466-477
Abstract

In this study, we studied the mechanism of the cytotoxicity of malabaricone C (mal C) against human breast cancer MCF-7 cell line. Mal C dose-dependently increased the sub G1 cell population, associated with cytoplasmic oligonucleosome formation and chromatin condensation. The mal C-induced apoptosis led to mitochondrial damage as revealed by fluorescence microscopy and flow cytometry of the JC-1-stained cells as well as from the release of mitochondrion-specific nuclease proteins AIF and endo G. Mal C also released intracellular Ca2+ from the MCF-7 cells, but the Ca2+-modulators BAPTA-AM and Ru360 only partially abrogated the apoptosis. The calpain activation by mal C did not have any effect on its cytotoxicity. On the other hand, after mal C treatment significant lysosomal membrane permeabilization (LMP), along with release of cathepsin B, as well as Bid-cleavage and its translocation to mitochondria were observed much earlier than the mitochondrial damage. This suggested that cytotoxicity of mal C against human MCF-7 human breast cancer cell line may proceed through LMP as the initial event that triggered a caspase-independent, but cathepsin B and t-Bid-dependent intrinsic mitochondrial apoptotic pathway. A significant accumulation of cells in the S or G2-M phases along with upregulation of the cyclins E and A due to mal C exposure promises it to be a potential anti-cancer agent.  相似文献   

12.
Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells.Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death.Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.  相似文献   

13.
14.
The role of “sphingolipid rheostat” by ceramide and sphingosine 1-phosphate (S1P) in the regulation of autophagy remains unclear. In human leukemia HL-60 cells, amino acid deprivation (AA(−)) caused autophagy with an increase in acid sphingomyleinase (SMase) activity and ceramide, which serves as an autophagy inducing lipid. Knockdown of acid SMase significantly suppressed the autophagy induction. S1P treatment counteracted autophagy induction by AA(−) or C2-ceramide. AA(−) treatment promoted mammalian target of rapamycin (mTOR) dephosphorylation/inactivation, inducing autophagy. S1P treatment suppressed mTOR inactivation and autophagy induction by AA(−). S1P exerts biological actions via cell surface receptors, and S1P3 among five S1P receptors was predominantly expressed in HL-60 cells. We evaluated the involvement of S1P3 in suppressing autophagy induction. S1P treatment of CHO cells had no effects on mTOR inactivation and autophagy induction by AA(−) or C2-ceramide. Whereas S1P treatment of S1P3 overexpressing CHO cells resulted in activation of the mTOR pathway, preventing cells from undergoing autophagy induced by AA(−) or C2-ceramide. These results indicate that S1P-S1P3 plays a role in counteracting ceramide signals that mediate mTOR-controlled autophagy. In addition, we evaluated the involvement of ceramide-activated protein phosphatases (CAPPs) in ceramide-dependent inactivation of the mTOR pathway. Inhibition of CAPP by okadaic acid in AA(−)- or C2-ceramide-treated cells suppressed dephosphorylation/inactivation of mTOR, autophagy induction, and autophagy-associated cell death, indicating a novel role of ceramide-CAPPs in autophagy induction. Moreover, S1P3 engagement by S1P counteracted cell death. Taken together, these results indicated that sphingolipid rheostat in ceramide-CAPPs and S1P-S1P3 signaling modulates autophagy and its associated cell death through regulation of the mTOR pathway.  相似文献   

15.
Na(+)/K(+)-ATPase targeted cancer therapy has attracted increasing interests of oncologists in lung cancer field. Although multiple anti-cancer mechanisms of cardiac glycosides as Na(+)/K(+)-ATPase inhibitors are revealed, the role of autophagy and related molecular signaling pathway for the class of compounds in human non-small cell lung cancer (NSCLC) cells has not been systematically examined. We herein investigated the anti-cancer effects of two representative cardiac glycosides, digoxin and ouabain, in A549 and H460 cell lines. Both agents caused significant growth inhibition at nanomolar level. The cardiac glycosides were found to induce moderate G(2)/M arrest but not apoptosis at IC(50) level in the NSCLC cell lines. Moreover, autophagy was markedly induced by both agents, as evidenced by the time- and dose-dependent increase of LC3-II, up-regulation of Atg5 and Beclin1, as well as by the observations through acridine orange staining, transmission electron microscopy and quantification of GFP-LC3 fluorescence. Importantly, AMP-activated protein kinase (AMPK) pathway was activated, resulting in mammalian target of rapamycin (mTOR) deactivation during autophagy induction. Moreover, extracellular-signal-regulated kinase 1/2 (ERK1/2) activation was simultaneously found to be involved in the autophagy regulation. Co-treatment with respective inhibitors or siRNAs could either block the autophagic phenotypes and signals, or significantly increase the cellular viability, indicating the drugs-induced autophagy plays tumor-suppressing role. This work provides first evidence showing that the cardiac glycosides induce autophagy in human NSCLC cells through regulation of both mTOR and ERK1/2 signaling pathways. The autophagy may at least partially account for the growth inhibitory effects of the compounds in human NSCLC cells.  相似文献   

16.
Aromatase inhibitors (AIs), which block the conversion of androgens to estrogens, are used for hormone-dependent breast cancer treatment. Exemestane, a steroidal that belongs to the third-generation of AIs, is a mechanism-based inhibitor that binds covalently and irreversibly, inactivating and destabilizing aromatase. Since the biological effects of exemestane in breast cancer cells are not totally understood, its effects on cell viability, cell proliferation and mechanisms of cell death were studied in an ER-positive aromatase-overexpressing breast cancer cell line (MCF-7aro). The effects of 3-methyladenine (3-MA), an inhibitor of autophagy and of ZVAD-FMK, an apoptotic inhibitor, in exemestane treated cells were also investigated. Our results indicate that exemestane induces a strong inhibition in MCF-7aro cell proliferation in a dose- and time-dependent manner, promoting a significant cell cycle arrest in G(0)/G1 or in G(2)/M phases after 3 and 6 days of treatment, respectively. This was accompanied by a decrease in cell viability due to activation of cell death by apoptosis, via mitochondrial pathway and the occurrence of autophagy. Inhibition of autophagy by the autophagic inhibitor, 3-MA, resulted in a reduction of cell viability and activation of caspases. All together the results obtained suggest that exemestane induced mitochondrial-mediated apoptosis and autophagy, which act as a pro-survival process regulating breast cancer cell apoptosis.  相似文献   

17.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

18.
Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary and immortalized mouse PaSC, we assess the relative contributions of AMPK/mTOR signaling, autophagy and the UPR to cell fate responses during metabolic stress induced by mitochondrial dysfunction. The mitochondrial uncoupler rottlerin at low doses (0.5–2.5 μM) was added to cells cultured in 10% FBS complete media. Mitochondria rapidly depolarized, followed by altered mitochondrial dynamics and decreased cellular ATP levels. This mitochondrial dysfunction elicited rapid, sustained AMPK activation, mTOR pathway inhibition, and blockade of autophagic flux. Rottlerin treatment also induced rapid, sustained PERK/CHOP UPR signaling. Subsequently, high doses (>5 μM) induced loss of cell viability and cell death. Interestingly, AMPK knock-down using siRNA did not prevent rottlerin-induced mTOR inhibition, autophagy, or CHOP upregulation, suggesting that AMPK is dispensable for these responses. Moreover, CHOP genetic deletion, but not AMPK knock-down, prevented rottlerin-induced apoptosis and supported cell survival, suggesting that UPR signaling is a major modulator of cell fate in PaSC during metabolic stress. Further, short-term rottlerin treatment reduced both PaSC fibrogenic potential and IL-6 mRNA expression. In contrast, expression levels of the angiogenic factors HGF and VEGFα were unaffected, and the immune modulator IL-4 was markedly upregulated. These data imply that metabolic stress-induced PaSC reprogramming differentially modulates neighboring cells in the tumor microenvironment.  相似文献   

19.
《Autophagy》2013,9(5):464-467
Autophagy is an ancient cell survival pathway that allows cells to recoup ATP and essential building blocks for biosynthesis when they are starved of nutrients or when they are exposed to hypoxia, which are hallmarks of the tumor microenvironment. This pathway involves the formation of double-membraned vesicles, coined autophagosomes, which envelop bulk cellular material and/or organelles and that subsequently fuse with lysosomes that degrade their cargo. Autophagy has been suggested to play important roles in chemoresistance of cancer to some therapeutic agents, which typically induce an apoptotic response. For example, the histone deacetylase inhibitor SAHA induces both apoptosis and autophagy, suggesting that agents that disrupt the autophagy pathway might augment its efficacy as a therapeutic agent. We tested this notion in a model of Imatinib-refractory chronic myelogenous leukemia (CML) and in imatinib-resistant primary CML cells from patients bearing mutations in Bcr-Abl, including the T315I mutation that causes resistance to currently utilized tyrosine kinase inhibitors and translates into a very poor clinical prognosis. Agents that disrupt autophagy were shown to synergize with SAHA in provoking apoptotic death of these refractory tumors. These findings support the use of agents that disrupt the autophagy pathway in settings of chemorefractory malignancies.

Addendum to:

Targeting Autophagy Augments the Anticancer Activity of the Histone Deacetylase Inhibitor SAHA to Overcome Bcr-Abl-Mediated Drug Resistance

J.S. Carew, S.T. Nawrocki, C.N. Kahue, H. Zhang, C. Yang, L. Chung, J.A. Houghton, P. Huang, F.J. Giles and J.L. Cleveland

Blood 2007; In press  相似文献   

20.
《Autophagy》2013,9(1):47-48
The BH3-only death factors share just the short BH3 domain with the other Bcl-2 family subclasses. With the exception of BID, which might also bind to BAX, they are thought to act by binding to and neutralizing Bcl-2 like survival factors.Camptothecin (CPT)-induced apoptosis in breast cancer MCF-7 cells is associated with activation of cathepsin B and aggregation of BAX and BID on mitochondria. BID knock down protects cancer cells against apoptosis and induces autophagy, manifested with increased expression of Beclin1 and MAP1LC3. The compensatory increase in the concentration of Hrk (another member of the BH3-only protein family) and its co-localization with BCL-2 on organelles in BID(-) breast cancer cells has also been observed. Nonetheless, Hrk is not able to substitute for BID in triggering apoptosis. Its role in autophagy induction is also doubtful, since MAP1LC3 expression was equally high in BID(-)Hrk(-) and BID(-)Hrk(+) breast cancer cells exposed to CPT. We conclude that BID can serve as a molecular switch between apoptosis and autophagy. BID(+) and BID(-) breast cancer MCF-7 cells could be considered to be a useful model for the study of the molecular interdependences between apoptosis and autophagy and the role of both processes in cancer therapy.

Addenda to:

Cathepsins and BID are Involved in the Molecular Switch between Apoptosis and Autophagy in Breast Cancer MCF-7 Cells Exposed to Camptothecin

M. Lamparska-Przybysz, B. Gajkowska and T. Motyl

J Physiol Pharmacol 2005; 56:159-79  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号