首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Circadian rhythmicity and sleep homeostasis interact to regulate sleep-wake cycles [1-4], but the genetic basis of individual differences in sleep-wake regulation remains largely unknown [5]. PERIOD genes are thought to contribute to individual differences in sleep timing by affecting circadian rhythmicity [6], but not sleep homeostasis [7, 8]. We quantified the contribution of a variable-number tandem-repeat polymorphism in the coding region of the circadian clock gene PERIOD3 (PER3) [9, 10] to sleep-wake regulation in a prospective study, in which 24 healthy participants were selected only on the basis of their PER3 genotype. Homozygosity for the longer allele (PER3(5/5)) had a considerable effect on sleep structure, including several markers of sleep homeostasis: slow-wave sleep (SWS) and electroencephalogram (EEG) slow-wave activity in non-rapid eye movement (non-REM) sleep and theta and alpha activity during wakefulness and REM sleep were all increased in PER3(5/5) compared to PER3(4/4) individuals. In addition, the decrement of cognitive performance in response to sleep loss was significantly greater in the PER3(5/5) individuals. By contrast, the circadian rhythms of melatonin, cortisol, and peripheral PER3 mRNA expression were not affected. The data show that this polymorphism in PER3 predicts individual differences in the sleep-loss-induced decrement in performance and that this differential susceptibility may be mediated by its effects on sleep homeostasis.  相似文献   

2.
GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.  相似文献   

3.
A variable number tandem repeat polymorphism in the coding region of the circadian clock PERIOD3 (PER3) gene has been shown to affect sleep. Because circadian rhythms and sleep are known to modulate sympathovagal balance, we investigated whether homozygosity for this PER3 polymorphism is associated with changes in autonomic nervous system (ANS) activity during sleep and wakefulness at baseline and after sleep deprivation. Twenty-two healthy participants were selected according to their PER3 genotype. ANS activity, evaluated by heart rate (HR) and HR variability (HRV) indexes, was quantified during baseline sleep, a 40-h period of wakefulness, and recovery sleep. Sleep deprivation induced an increase in slow-wave sleep (SWS), a decrease in the global variability, and an unbalance of the ANS with a loss of parasympathetic predominance and an increase in sympathetic activity. Individuals homozygous for the longer allele (PER3(5/5)) had more SWS, an elevated sympathetic predominance, and a reduction of parasympathetic activity compared with PER3(4/4), in particular during baseline sleep. The effects of genotype were strongest during non-rapid eye movement (NREM) sleep and absent or much smaller during REM sleep. The NREM-REM cycle-dependent modulation of the low frequency-to-(low frequency + high frequency) ratio was diminished in PER3(5/5) individuals. Circadian phase modulated HR and HRV, but no interaction with genotype was observed. In conclusion, the PER3 polymorphism affects the sympathovagal balance in cardiac control in NREM sleep similar to the effect of sleep deprivation.  相似文献   

4.
Sleep-related reduction in geniohyoid muscular support may lead to increased airway resistance in normal subjects. To test this hypothesis, we studied seven normal men throughout a single night of sleep. We recorded inspiratory supraglottic airway resistance, geniohyoid muscle electromyographic (EMGgh) activity, sleep staging, and ventilatory parameters in these subjects during supine nasal breathing. Mean inspiratory upper airway resistance was significantly (P less than 0.01) increased in these subjects during all stages of sleep compared with wakefulness, reaching highest levels during non-rapid-eye-movement (NREM) sleep [awake 2.5 +/- 0.6 (SE) cmH2O.l-1.s, stage 2 NREM sleep 24.1 +/- 11.1, stage 3/4 NREM sleep 30.2 +/- 12.3, rapid-eye-movement (REM) sleep 13.0 +/- 6.7]. Breath-by-breath linear correlation analyses of upper airway resistance and time-averaged EMGgh amplitude demonstrated a significant (P less than 0.05) negative correlation (r = -0.44 to -0.55) between these parameters in five of seven subjects when data from all states (wakefulness and sleep) were combined. However, we found no clear relationship between normalized upper airway resistance and EMGgh activity during individual states (wakefulness, stage 2 NREM sleep, stage 3/4 NREM sleep, and REM sleep) when data from all subjects were combined. The timing of EMGgh onset relative to the onset of inspiratory airflow did not change significantly during wakefulness, NREM sleep, and REM sleep. Inspiratory augmentation of geniohyoid activity generally preceded the start of inspiratory airflow. The time from onset of inspiratory airflow to peak inspiratory EMGgh activity was significantly increased during sleep compared with wakefulness (awake 0.81 +/- 0.04 s, NREM sleep 1.01 +/- 0.04, REM sleep 1.04 +/- 0.05; P less than 0.05). These data indicate that sleep-related changes in geniohyoid muscle activity may influence upper airway resistance in some subjects. However, the relationship between geniohyoid muscle activity and upper airway resistance was complex and varied among subjects, suggesting that other factors must also be considered to explain sleep influences on upper airway patency.  相似文献   

5.
The Djungarian hamster (Phodopus sungorus) is a markedly photoperiodic rodent which exhibits daily torpor under short photoperiod. Normative data were obtained on vigilance states, electroencephalogram (EEG) power spectra (0.25–25.0 Hz), and cortical temperature (TCRT) under a 168 h light-dark schedule, in 7 Djungarian hamsters for 2 baseline days, 4 h sleep deprivation (SD) and 20 h recovery.During the baseline days total sleep time amounted to 59% of recording time, 67% in the light period and 43% in the dark period. The 4 h SD induced a small increase in the amount of non-rapid eye movement (NREM) sleep and a marked increase in EEG slow-wave activity (SWA; mean power density 0.75–4.0 Hz) within NREM sleep in the first hours of recovery. TCRT was lower in the light period than in the dark period. It decreased at transitions from either waking or rapid eye movement (REM) sleep to NREM sleep, and increased at the transition from NREM sleep to waking or REM sleep. After SD, TCRT was lower in all vigilance states.In conclusion, the sleep-wake pattern, EEG spectrum, and time course of TCRT in the Djungarian hamster are similar to other nocturnal rodents. Also in the Djungarian hamster the time course of SWA seems to reflect a homeostatically regulated process as was formulated in the two-process model of sleep regulation.Abbreviations EEG electroencephalogram - EMG electromyogram - N NREM sleep - NREM non-rapid eye movement - R REM sleep - REM rapid eye movement - SD sleep deprivation - SWA slow-wave activity - TCRT cortical temperature - TST total sleep time - VS vigilance state - W waking  相似文献   

6.
Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.  相似文献   

7.
Recent epidemiological, clinical, and experimental studies have demonstrated important links between sleep duration and architecture, circadian rhythms, and metabolism, although the genetic pathways that interconnect these processes are not well understood. Leptin is a circulating hormone and major adiposity signal involved in long-term energy homeostasis. In this study, we tested the hypothesis that leptin deficiency leads to impairments in sleep-wake regulation. Male ob/ob mice, a genetic model of leptin deficiency, had significantly disrupted sleep architecture with an elevated number of arousals from sleep [wild-type (WT) mice, 108.2 +/- 7.2 vs. ob/ob mice, 148.4 +/- 4.5, P < 0.001] and increased stage shifts (WT, 519.1 +/- 25.2 vs. ob/ob, 748.0 +/- 38.8, P < 0.001) compared with WT mice. Ob/ob mice also had more frequent, but shorter-lasting sleep bouts compared with WT mice, indicating impaired sleep consolidation. Interestingly, ob/ob mice showed changes in sleep time, with increased amounts of 24-h non-rapid eye movement (NREM) sleep (WT, 601.5 +/- 10.8 vs. ob/ob, 669.2 +/- 13.4 min, P < 0.001). Ob/ob mice had overall lower body temperature (WT, 35.1 +/- 0.2 vs. ob/ob, 33.4 +/- 0.2 degrees C, P < 0.001) and locomotor activity counts (WT, 25125 +/- 2137 vs. ob/ob, 5219 +/- 1759, P < 0.001). Ob/ob mice displayed an attenuated diurnal rhythm of sleep-wake stages, NREM delta power, and locomotor activity. Following sleep deprivation, ob/ob mice had smaller amounts of NREM and REM recovery sleep, both in terms of the magnitude and the duration of the recovery response. In combination, these results indicate that leptin deficiency disrupts the regulation of sleep architecture and diurnal rhythmicity.  相似文献   

8.
The suprachiasmatic nucleus (SCN) regulates the circadian rhythms of body temperature (T(b)) and vigilance states in mammals. We studied rats in which circadian rhythmicity was abolished after SCN lesions (SCNx rats) to investigate the association between the ultradian rhythms of sleep-wake states and brain temperature (T(br)), which are exposed after lesions. Ultradian rhythms of T(br) (mean period: 3.6 h) and sleep were closely associated in SCNx rats. Within each ultradian cycle, nonrapid eye movement (NREM) sleep was initiated 5 +/- 1 min after T(br) peaks, after which temperature continued a slow decline (0.02 +/- 0.006 degrees C/min) until it reached a minimum. Sleep and slow wave activity (SWA), an index of sleep intensity, were associated with declining temperature. Cross-correlation analysis revealed that the rhythm of T(br) preceded that of SWA by 2-10 min. We also investigated the thermoregulatory and sleep-wake responses of SCNx rats and controls to mild ambient cooling (18 degrees C) and warming (30 degrees C) over 24-h periods. SCNx rats and controls responded similarly to changes in ambient temperature. Cooling decreased REM sleep and increased wake. Warming increased T(br), blunted the amplitude of ultradian T(br) rhythms, and increased the number of transitions into NREM sleep. SCNx rats and controls had similar percentages of NREM sleep, REM sleep, and wake, as well as the same average T(b) within each 24-h period. Our results suggest that, in rats, the SCN modulates the timing but not the amount of sleep or the homeostatic control of sleep-wake states or T(b) during deviations in ambient temperature.  相似文献   

9.
Sleep EEG spectral analysis in a diurnal rodent:Eutamias sibiricus   总被引:2,自引:0,他引:2  
1. Sleep was studied in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. Analysis of the distribution of wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep over the 24 h period (LD 12:12) showed that total sleep time was 27.5% of recording time during the 12 h light period and 74.4% during the 12 h dark period. Spectral analysis of the sleep EEG revealed a progressive decay in delta power density in NREM sleep during darkness. Power density of the higher frequencies increased at the end of darkness. Power density of the higher frequencies decreased and that of the lower frequencies increased during light. 2. Analysis of the distribution of vigilance states under three different photoperiods (LD 18:6; 12:12; 6:18) revealed that changes in daylength mainly resulted in a redistribution of sleep and wakefulness over light and darkness. Under long days the percentage of sleep during light was enhanced. The time course of delta power density in NREM sleep was characterized by a long rising part and a short falling part under long days, while a reversed picture emerged under short days. As a consequence, the power density during days. As a consequence, the power density during light was relatively high under long days. 3. After 24 h sleep deprivation by forced activity, no significant changes in the percentages of wakefulness and NREM were observed, whereas REM sleep was slightly enhanced. EEG power density, however, was significantly increased by ca. 50% in the 1.25-10.0 Hz range in the first 3 h of recovery sleep. This increase gradually decayed over the recovery night. 4. The same 24 h sleep deprivation technique led to a ca. 25% increase in oxygen consumption during recovery nights. While the results of the EEG spectral analysis are compatible with the hypothesis that delta power density reflects the 'intensity' of NREM sleep as enhanced by prior wakefulness and reduced by prior sleep, such enhanced sleep depth after sleep deprivation is not associated with reduced energy expenditure as might be anticipated by some energy conservation hypotheses on sleep function.  相似文献   

10.
Geniohyoid muscle activity in normal men during wakefulness and sleep   总被引:4,自引:0,他引:4  
Reduction in the activity of upper airway "dilator" muscles during sleep may allow the pharyngeal airway to collapse in some individuals. However, quantitative studies concerning the effect of sleep on specific upper airway muscles that may influence pharyngeal patency are sparse and inconclusive. We studied seven normal men (mean age 27, range 22-37 yr) during a single nocturnal sleep study and recorded sleep staging parameters, ventilation, and geniohyoid muscle electromyogram (EMGgh) during nasal breathing throughout the night. Anatomic landmarks for placement of intramuscular geniohyoid recording electrodes were determined from a cadaver study. These landmarks were used in percutaneous placement of wire electrodes, and raw and moving-time-averaged EMGgh activities were recorded. Sleep stage was determined using standard criteria. Stable periods of wakefulness and non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep were selected for analysis. The EMGgh exhibited phasic inspiratory activity during wakefulness and sleep in all subjects. In six of seven subjects, mean and peak inspiratory EMGgh activities were significant (P less than 0.05) reduced during stages 2 and 3/4 NREM sleep and REM sleep compared with wakefulness. This reduction of EMGgh activity was shown to result from a sleep-related decline in the level of tonic muscle activity. Phasic inspiratory EMGgh activity during all stages of sleep was not significantly different from that during wakefulness. Of interest, tonic, phasic, and peak EMGgh activities were not significantly reduced during REM sleep compared with any other sleep stage in any subject. In addition, the slope of onset of phasic EMGgh activity was not different during stage 2 NREM and REM sleep compared with wakefulness in these subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We investigated circadian and homeostatic regulation of nonrapid eye movement (NREM) sleep in golden-mantled ground squirrels during euthermic intervals between torpor bouts. Slow-wave activity (SWA; 1-4 Hz) and sigma activity (10-15 Hz) represent the two dominant electroencephalographic (EEG) frequency components of NREM sleep. EEG sigma activity has a strong circadian component in addition to a sleep homeostatic component, whereas SWA mainly reflects sleep homeostasis [Dijk DJ and Czeisler CA. J Neurosci 15: 3526-3538, 1995; Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, and Czeisler CA. J Physiol (Lond) 505: 851-858, 1997]. Animals maintained under constant conditions continued to display circadian rhythms in both sigma activity and brain temperature throughout euthermic intervals, whereas sleep and wakefulness showed no circadian organization. Instead, sleep and wakefulness were distributed according to a 6-h ultradian rhythm. SWA, NREM sleep bout length, and sigma activity responded homeostatically to the ultradian sleep-wake pattern. We suggest that the loss of sleep-wake consolidation in ground squirrels during the hibernation season may be related to the greatly decreased locomotor activity during the hibernation season and may be necessary for maintenance of multiday torpor bouts characteristic of hibernating species.  相似文献   

12.
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). Here, we tested four hypotheses in unanesthetized, spontaneously breathing rats using radiotelemetry for EEG and diaphragm electromyography (Dia EMG) activity: 1) AIH induces LTF in Dia EMG activity; 2) diaphragm LTF (Dia LTF) is more robust during sleep vs. wakefulness; 3) AIH (or repetitive AIH) disrupts natural sleep-wake architecture; and 4) preconditioning with daily AIH (dAIH) for 7 days enhances Dia LTF. Sleep-wake states and Dia EMG were monitored before (60 min), during, and after (60 min) AIH (10, 5-min hypoxic episodes, 5-min normoxic intervals; n = 9), time control (continuous normoxia, n = 8), and AIH following dAIH preconditioning for 7 days (n = 7). Dia EMG activities during quiet wakefulness (QW), rapid eye movement (REM), and non-REM (NREM) sleep were analyzed and normalized to pre-AIH values in the same state. During NREM sleep, diaphragm amplitude (25.1 ± 4.6%), frequency (16.4 ± 4.7%), and minute diaphragm activity (amplitude × frequency; 45.2 ± 6.6%) increased above baseline 0-60 min post-AIH (all P < 0.05). This Dia LTF was less robust during QW and insignificant during REM sleep. dAIH preconditioning had no effect on LTF (P > 0.05). We conclude that 1) AIH induces Dia LTF during NREM sleep and wakefulness; 2) Dia LTF is greater in NREM sleep vs. QW and is abolished during REM sleep; 3) AIH and repetitive AIH disrupt natural sleep patterns; and 4) Dia LTF is unaffected by dAIH. The capacity for plasticity in spinal pump muscles during sleep and wakefulness suggests an important role in the neural control of breathing.  相似文献   

13.
The correlation between brain blood flow (BBF) and respiratory neuromotor output, as reflected by diaphragmatic electromyogram (EMG) activity (EMGdi), was studied during wakefulness, rapid-eye-movement (REM) sleep, and non-REM sleep (NREM). Compared with the awake state, mean BBF increased by 4.7% during NREM and by 32.6% during REM (P less than 0.001). Also, surges of BBF during REM occurred during periods of intense phasic activity. EMGdi [peak and peak/inspiratory time (TI)] was highly variable within REM periods but fluctuated as a reciprocal function of simultaneously measured BBf (r = -0.49, P less than 0.001). Furthermore, mean EMGdipeak decreased from NREM to REM in a manner reciprocally related to the corresponding change in BBF (r = -0.77, P = 0.015). These findings suggest that a component of the reduction of respiratory neuromotor output during REM is attributable to increased BBF with consequent relative hypocapnia in the central chemoreceptor environment.  相似文献   

14.
In ovariectomized (OVX) Sprague-Dawley rats, estradiol benzoate (EB) has been reported to decrease rapid eye movement (REM) and non-REM (NREM) sleep during the dark phase for up to 3 days. It is unknown, however, if estrogenic effects on sleep extend beyond 3 days or if other estrogens could induce the same changes. Furthermore, it is unclear whether the increased wakefulness in the dark phase was due to changes in active or quiet wakefulness. Therefore, we examined the effects of daily injections of 17alpha-ethinyl estradiol (EE) for 6 days on sleep and wakefulness in the OVX rat. After 3 days of baseline recording using a telemetric system, rats were administered sesame oil (sc) for 3 days followed by injection with EE (20 mug/rat/day, sc) for 6 days. After treatment, sleep was recorded during hormone withdrawal for an additional 5 days. A few sporadic but statistically significant increases in light phase sleep occurred during the last 3 days of EE treatment. Starting on day 2 of the study, EE caused statistically significant decreases in dark phase REM sleep that were maintained throughout the treatment period and persisted until the 3rd day of hormone withdrawal. During the dark phase, statistically significant decreases in NREM sleep and increases in active wakefulness started on the second day of treatment and abated by the end of treatment. This study demonstrated that EE had similar effects on sleep-wakefulness to EB and demonstrates the utility of telemetric polysomnographic recording of the female OVX rat as a model for understanding the estrogen-induced changes on sleep-wakefulness.  相似文献   

15.
The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states – NREM and REM sleep, which occur, in rodents, on a time scale of ∼5–10 minutes. Neither the mechanisms underlying the time constants of these two processes – the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.  相似文献   

16.

We examined the effects of ornithine on the sleep-wake cycle by monitoring the electroencephalo-gram, electromyogram, and locomotor activity of freely moving mice after oral administration of it at lights-off time (18:00). Ornithine (1.0 and 3.0 g/kg of body weight) increased the amount of non-rapid eye movement (non-REM, NREM) sleep for 2 h after its administration, with a peak at 60 min post administration, to 164% and 198%, respectively, of that of the vehicle-administered mice, without changing the amount of REM sleep. The administration of ornithine at a lower dose (0.3 g/kg of body weight) did not increase the amount of NREM sleep compared with the vehicle administration. Ornithine did not affect the power spectrum density of NREM sleep but increased the number of episodes of wakefulness and NREM sleep and that of transitions between wakefulness and NREM sleep, and decreased the mean duration of wake episodes in a dose-dependent manner for 2 h after the oral administration. These results indicate that ornithine increased the amount of NREM sleep without reducing the power spectrum density of NREM sleep.

  相似文献   

17.
Sleep is generally considered to be a recovery from prior wakefulness. The architecture of sleep not only depends on the duration of wakefulness but also on its quality in terms of specific experiences. In the present experiment, we studied the effects of restraint stress on sleep architecture and sleep electroencephalography (EEG) in different strains of mice (C57BL/6J and BALB/cJ). One objective was to determine if the rapid eye movement (REM) sleep-promoting effects of restraint stress previously reported for rats would also occur in mice. In addition, we examined whether the effects of restraint stress on sleep are different from effects of social defeat stress, which was found to have a non-REM (NREM) sleep-promoting effect. We further measured corticosterone and prolactin levels as possible mediators of restraint stress-induced changes in sleep. Adult male C57BL/6J and BALB/cJ mice were subjected to 1 h of restraint stress in the middle of the light phase. To control for possible effects of sleep loss per se, the animals were also kept awake for 1 h by gentle handling. Restraint stress resulted in a mild increase in NREM sleep compared with baseline, but, overall, this effect was not significantly different from sleep deprivation by gentle handling. In contrast, restraint stress caused a significant increase in REM sleep compared with handling in the C57BL/6J mice but not in BALB/cJ mice. Corticosterone levels were significantly and similarly elevated after restraint in both strains, but prolactin was increased only in the C57BL/6J mice. In conclusion, this study shows that the restraint stress-induced increase in REM sleep in mice is strongly strain dependent. The concomitant increases in prolactin and REM sleep in the C57BL/6J mice, but not in BALB/cJ mice, suggest prolactin may be involved in the mechanism underlying restraint stress-induced REM sleep. Furthermore, this study confirms that different stressors differentially affect NREM and REM sleep. Whereas restraint stress promotes REM sleep in C57BL/6J mice, we previously found that in the same strain, social defeat stress promotes NREM sleep. As such, studying the consequences of specific stressful stimuli may be an important tool to unravel both the mechanism and function of different sleep stages.  相似文献   

18.
Summary Sleep was studied by continuous 24-h recordings in adult male Syrian hamsters, chronically implanted with EEG and EMG electrodes. Three vigilance states were determined using visual scoring and EEG power spectra (0.25–25 Hz) computed for 4-s episodes.The effects of two methods of total sleep deprivation (SD) were examined on vigilance states and the EEG power spectrum. The animals were subjected to 24 h SD by: (1) forced locomotion in a slowly rotating drum, (2) gentle handling whenever the hamsters attempted a sleeping posture. In addition, the hamsters were subjected to SD by handling during the first 3 h of the L period.Sleep predominated in the L period (78.2% of 12 h) and the D period (51.2%). The power spectra of the 3 vigilance states were similar during the L and D period. In NREM sleep, power density values in the low frequency range (0.25–6.0 Hz) exceeded those of REM sleep and W by a maximum factor of 8.3 and 2.8, respectively. At frequencies above 16 Hz, NREM and REM sleep power density values were significantly lower than during W. A progressive decrease in power density for low EEG frequencies (0.25–7 Hz) during NREM sleep was seen in the course of the L period. Power density values of higher frequencies (8–25 Hz) increased at the end of the L period and remained high during the first hours of the D period.The effect of prolonged SD on vigilance states and EEG spectra was similar by both methods and strikingly small compared to similar results in rats. In contrast, 3 h SD induced a large and more prolonged effect. The similarities and differences of sleep and sleep regulation are summarized for the hamster, rat and man.Abbreviations EEG electroencephalogram - LD light dark - REM rapid eye movements - NREM sleep non REM sleep - W waking - SD sleep deprivation - TST total sleep time - L light - D dark  相似文献   

19.

Background

There is accumulating evidence that anxiety impairs sleep. However, due to high sleep variability in anxiety disorders, it has been difficult to state particular changes in sleep parameters caused by anxiety. Sleep profiling in an animal model with extremely high vs. low levels of trait anxiety might serve to further define sleep patterns associated with this psychopathology.

Methodology/Principal Findings

Sleep-wake behavior in mouse lines with high (HAB), low (LAB) and normal (NAB) anxiety-related behaviors was monitored for 24 h during baseline and recovery after 6 h sleep deprivation (SD). The amounts of each vigilance state, sleep architecture, and EEG spectral variations were compared between the mouse lines. In comparison to NAB mice, HAB mice slept more and exhibited consistently increased delta power during non-rapid eye movement (NREM) sleep. Their sleep patterns were characterized by heavy fragmentation, reduced maintenance of wakefulness, and frequent intrusions of rapid eye movement (REM) sleep. In contrast, LAB mice showed a robust sleep-wake rhythm with remarkably prolonged sleep latency and a long, persistent period of wakefulness. In addition, the accumulation of delta power after SD was impaired in the LAB line, as compared to HAB mice.

Conclusions/Significance

Sleep-wake patterns were significantly different between HAB and LAB mice, indicating that the genetic predisposition to extremes in trait anxiety leaves a biological scar on sleep quality. The enhanced sleep demand observed in HAB mice, with a strong drive toward REM sleep, may resemble a unique phenotype reflecting not only elevated anxiety but also a depression-like attribute.  相似文献   

20.
Exogenous administration of orexin can promote wakefulness and respiration. Here we examined whether intrinsic orexin participates in the control of breathing in a vigilance state-dependent manner. Ventilation was recorded together with electroencephalography and electromyography for 6 h during the daytime in prepro-orexin knockout mice (ORX-KO) and wild-type (WT) littermates. Respiratory parameters were separately determined during quiet wakefulness (QW), slow-wave sleep (SWS), or rapid eye movement (REM) sleep. Basal ventilation was normal in ORX-KO, irrespective of vigilance states. The hypercapnic ventilatory response during QW in ORX-KO (0.19 +/- 0.01 ml.min(-1).g(-1).%CO(2)(-1)) was significantly smaller than that in WT mice (0.38 +/- 0.04 ml.min(-1).g(-1).%CO(2)(-1)), whereas the responses during SWS and REM in ORX-KO were comparable to those in WT mice. Hypoxic responses during wake and sleep periods were not different between the genotypes. Spontaneous but not postsigh sleep apneas were more frequent in ORX-KO than in WT littermates during both SWS and REM sleep. Our findings suggest that orexin plays a crucial role both in CO(2) sensitivity during wakefulness and in preserving ventilation stability during sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号