首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
2.
Three model communities of trembling aspen (monoculture, and mixed with either paper birch or sugar maple) were grown for seven years in elevated atmospheric CO(2) and O(3) using Free Air CO(2) Enrichment (FACE) technology. We utilized trends in species' importance, calculated as an index of volume growth and survival, as indications of shifting community composition. For the pure aspen communities, different clones emerged as having the highest change in relative importance values depending on the pollutant exposure. In the control and elevated CO(2) treatments, clone 42E was rapidly becoming the most successful clone while under elevated O(3), clone 8 L emerged as the dominant clone. In fact, growth of clone 8 L was greater in the elevated O(3) treatment compared to controls. For the mixed aspen-birch community, importance of aspen and birch changed by - 16 % and + 62 %, respectively, in the controls. In the treatments, however, importance of aspen and birch changed by - 27 % and + 87 %, respectively, in elevated O(3), and by - 10 % and + 45 %, respectively, in elevated CO(2). Thus, the presence of elevated O(3) hastened conversion of stands to paper birch, whereas the presence of elevated CO(2) delayed it. Relative importance of aspen and maple changed by - 2 % and + 3 %, respectively, after seven years in the control treatments. But in elevated O(3), relative importance of aspen and maple changed by - 2 % and + 5 %, respectively, and in elevated CO(2) by + 9 and - 20 %, respectively. Thus, elevated O(3) slightly increases the rate of conversion of aspen stands to sugar maple, but maple is placed at a competitive disadvantage to aspen under elevated CO(2).  相似文献   

3.
The nutritional benefits that mycorrhizal associations provide to plants may be constrained by acidic soil conditions resulting in decreased photosynthetic function. Sugar maple (Acer saccharum) and red maple (Acer rubrum) seedlings were grown on a native acidic (pH 4.1) soil both unamended and amended with base cations (pH 6.2). In a second study a fungicide treatment was included. Foliar nutrition, mycorrhizal colonization, photosynthesis and their relationships were assessed. On the native soil, red maple maintained higher levels of mycorrhizal colonization and photosynthesis than sugar maple but showed little response to base cation amendments. Mycorrhizal colonization and photosynthesis of sugar maple increased significantly in response to base cation amendments. Correlations were observed among mycorrhizal colonization, foliar nutrition and photosynthesis. The fungicide treatment indicated that 50% of the base cation-induced increase in sugar maple photosynthesis was mycorrhiza related. The results suggest that base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. Red maple exhibits much less sensitivity to these same edaphic conditions.  相似文献   

4.
5.
An open-air system for exposing forest-canopy branches to ozone pollution   总被引:1,自引:1,他引:0  
We developed a chamberless system to expose branches to elevated concentrations of ozone with little alteration of micro-meteorological conditions. In a 35-year-old stand of sugar maple (Acer saccharum Marsh.), scaffolding and a platform (14 m in height) provided access to 10 branches and ten paired controls within the canopy. Ozone was delivered to the canopy through a manifold and an array of loops (38 cm in diameter) of teflon tubing individually fitted to each branch. Ozone-enriched air was discharged through numerous small holes in each loop positioned beneath the exposed foliage. A sampling system controlled by a microcomputer monitored ozone concentrations for each loop by means of composite air samples from 12 leaves, drawn through small teflon tubes (1.65 mm diameter) attached to the petioles. On average, coefficients of variation for ozone concentrations for the sample points within each branch loop were less than 50%. Between 0900 and 1700 h for 68 d of exposure, the mean hourly ozone concentrations among the branches averaged 95nmol mol−1 (±13SD), about twice the ambient mean. Frequency distributions of mean hourly concentrations during exposure were unimodal and approximately log-normal, comparable to ambient ozone concentrations. The open-air loop system enables exposure of branches to gaseous pollutants under relatively natural conditions.  相似文献   

6.
7.
Flower and fruit specimens of 184 individuals were sampled to investigate patterns of intraspecific variation and to evaluate recognition of taxa within the Acer tschonoskii complex using morphometric analysis. Previous taxonomic treatments have considered A. tschonoskii var. rubripes (=  A. komarovii ) and A. tschonoskii var. tschonoskii to be separate species. The morphological discontinuity between these two taxa was evident in peduncle and pedicel length, and in number of flowers. In addition, the delimitations of some species within sect. Macrantha were clarified using these diagnostic characters. In view of the geographical distribution of the A. tschonoskii complex, which includes many taxa of sect. Macrantha from China to Japan through Korea, the long raceme with many flowers ( A. sikkimense ) and unlobed leaf are considered more primitive than the short raceme with a small number of flowers and five-lobed leaf ( A. maximowiczii and A. komarovii ). However, many intermediate taxa were present. This study also suggests that several Chinese taxa, such as A. metcalfii, A. taronense, A. hookeri and A. grosseri , may be subject to different taxonomic interpretation and should be reinvestigated morphologically.  © 2003 The Linnean Society of London. Botanical Journal of the Linnean Society, 2003, 143 , 29−42.  相似文献   

8.
Fertilizer-induced reductions in CO(2) flux from soil ((F)CO(2)) in forests have previously been attributed to decreased carbon allocation to roots, and decreased decomposition as a result of nitrogen suppression of fungal activity. Here, we present evidence that decreased microbial respiration in the rhizosphere may also contribute to (F)CO(2) reductions in fertilized forest soils. Fertilization reduced (F)CO(2) by 16-19% in 65-yr-old plantations of northern red oak (Quercus rubra) and sugar maple (Acer saccharum), and in a natural 85-yr-old yellow birch (Betula allegheniensis) stand. In oak plots, fertilization had no effects on fine root biomass but reduced mycorrhizal colonization by 18% and microbial respiration by 43%. In maple plots, fertilization reduced root biomass, mycorrhizal colonization and microbial respiration by 22, 16 and 46%, respectively. In birch plots, fertilization reduced microbial respiration by 36%, but had variable effects on root biomass and mycorrhizal colonization. In plots of all three species, fertilization effects on microbial respiration were greater in rhizosphere than in bulk soil, possibly as a result of decreased rhizosphere carbon flux from these species in fertile soils. Because rhizosphere processes may influence nutrient availability and carbon storage in forest ecosystems, future research is needed to better quantify rhizo-microbial contributions to (F)CO(2).  相似文献   

9.
* Variation in the size and shape (physiognomy) of leaves has long been correlated to climate, and paleobotanists have used these correlations to reconstruct paleo-climate. Most studies focus on site-level means of largely nonoverlapping species sets. The sensitivity of leaf shape to climate within species is poorly known, which limits our general understanding of leaf-climate relationships and the value of intraspecific patterns for paleoclimate reconstructions. * The leaf physiognomy of two species whose native North American ranges span large climatic gradients (Acer rubrum and Quercus kelloggii) was quantified and correlated to mean annual temperature (MAT). Quercus kelloggii was sampled across a wide elevation range, but A. rubrum was sampled in strictly lowland areas. * Within A. rubrum, leaf shape correlates with MAT in a manner that is largely consistent with previous site-level studies; leaves from cold climates are toothier and more highly dissected. By contrast, Q. kelloggii is largely insensitive to MAT; instead, windy conditions with ample plant-available water may explain the preponderance of small teeth at high elevation sites, independent of MAT. * This study highlights the strong correspondence between leaf form and climate within some species, and demonstrates that intraspecific patterns may contribute useful information towards reconstructing paleoclimate.  相似文献   

10.
土壤干旱对元宝枫渗透调节能力的影响   总被引:6,自引:0,他引:6  
采用盆栽控水法和P—V技术研究分析了不同土壤干旱(速度、程度)条件对元宝枫渗透调节能力的影响。结果表明,元宝枫具有很强的渗透调节能力.但该能力受土壤干旱的速度和程度影响,在缓慢干旱条件下,元宝枫叶片的ψw、ψ0、π100、RWC^0、ROWC^0均明显降低.其中与渗透调节能力直接相关的(π100可下调0.52MPa,ψ0下调1.51MPa。在快速干旱条件下π100和ψ0分别仅下凋0.20MPa和0.48MPa。△π100值也表明缓慢干旱条件下元宝枫渗透调节能力是快速干旱下的45倍。在缓慢干旱条件下.由轻度到中度干旱时其渗透调节能力显著增强(增加270%);由中度到严重干旱时.增加不明显(增加了24.5%)。从3种有机渗透调节物质含量与△π100值的动态变化可见,可溶性糖含量增加对渗透调节能力的贡献是第一位的.其次是Pro、游离氨基酸。  相似文献   

11.
12.
Juvenile leaves in high-light environments commonly appear red as a result of anthocyanin pigments, which play a photoprotective role during light-sensitive ontogenetic stages. The loss of anthocyanin during leaf development presumably corresponds to a decreased need for photoprotection, as photosynthetic maturation allows leaves to utilize higher light intensities. However, the relationship between photosynthetic development and anthocyanin decline has yet to be quantitatively described. In this study, anthocyanin concentration was measured against photopigment content, lamina thickness, anatomical development, and photosynthetic CO(2) exchange in developing leaves of three deciduous tree species. In all species, anthocyanin disappearance corresponded with development of c. 50% mature photopigment concentrations, c. 80% lamina thickness, and differentiation of the mesophyll into palisade and spongy layers. Photosynthetic gas exchange correlated positively with leaf thickness and chlorophyll content, and negatively with anthocyanin concentration. Species with more rapid photosynthetic maturation lost anthocyanin earliest in development. Chlorophyll a/b ratios increased with leaf age, and were lower than those of acyanic species, consistent with a shading effect of anthocyanin. These results suggest that anthocyanin reassimilation is linked closely with chloroplast and whole-leaf developmental processes, supporting the idea that anthocyanins protect tissues until light processing and carbon fixation have matured to balance energy capture with utilization.  相似文献   

13.
14.
Genetic variation in plant response to atmospheric carbon dioxide (CO2) may have influenced paleo‐vegetation dynamics and could determine how future elevated CO2 drives plant evolution and ecosystem productivity. We established how levels of relatedness – the maternal family, population, and provenance – affect variation in the CO2 response of a species. This 2‐year growth chamber experiment focused on the germination, growth, biomass allocation, and survivorship responses of Acer rubrum to four concentrations of CO2: 180, 270, 360, and 600 μL L?1– representing Pleistocene through potential future conditions. We found that all levels of relatedness interacted with CO2 to contribute to variation in response. Germination responses to CO2 varied among families and populations, growth responses depended on families and regions of origin, and survivorship responses to CO2 were particularly affected by regional identities. Differences among geographic regions accounted for 23% of the variation in biomass response to CO2. If seeds produced under subambient CO2 conditions behave similarly, our results suggest that A. rubrum may have experienced strong selection on seedling survivorship at Pleistocene CO2 levels. Further, this species may evolve in response to globally rising CO2 so as to increase productivity above that experimentally observed today. Species responses to future atmospheric CO2 and the accompanying biotic effects on the global carbon cycle will vary among families, populations, and provenances.  相似文献   

15.
16.
Relatively high levels of dihydrozeatin and trans-zeatin were detected in unstratified seeds of Acer saccharum Marsh. Both cytokinins increased substantially over the first 20 days of stratification at 5°C and then fell rapidly to values well below original levels by first germination on day 55. In seeds held at 20°C, a non-afterripening temperature, cytokinin levels remained constant for the first 10 days and then declined to their lowest levels by day 20. Levels of putrescine, spermidine and spermine in the radicles and cotyledons did not change during the full course of the afterripening process, but large increments were noted during radicle emergence. A large increase in ethylene production at germination suggests that competition for S-adenosyl-methionine by the ethylene and polyamine biosynthetic pathways did not inhibit synthesis of ethylene or polyamines during seedling emergence and establishment. In seeds stratified at 20°C, ethylene showed an exceptionally large peak early in the stratification period, but polyamine contents remained low throughout the test. The present results are consistent with the hypothesis that cytokinins play a significant role in overcoming the metabolic block present in dormant seeds. This conclusion is supported by data showing that high levels of cytokinins develop concurrently with the start of tissue differentiation and at the time when abscisic acid and phenolic inhibitors decline in stratifying seeds. Changes in ethylene and polyamine contents did not correlate with any events in the afterripening process; however, large increases in levels of these substances were closely associated with the germinative process and, in the case of polyamines, specifically with the start of cell division.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi are important below-ground carbon (C) sinks that can be sensitive to increased nitrogen (N) availability. The abundance of AM fungi (AMF) was estimated in maple (Acer spp.) fine roots following more than a decade of experimental additions of N designed to simulate chronic atmospheric N deposition. Abundance of AMF was measured by staining and ocular estimation, as well as by analyzing for the AMF indicator fatty acid 16:1omega5c in phospholipid (biomass indicator) and neutral lipid (lipid storage indicator) fractions. Arbuscular mycorrhizal fungal biomass, storage structures and lipid storage declined in response to N addition measured by both methods. This pattern was found when AM response was characterized as colonization intensity, on an areal basis and in proportion to maple above-ground biomass. The phospholipid fraction of the fatty acid 16:1omega5c was positively correlated with total AMF colonization and the neutral lipid fraction with vesicle colonization. Decreased AMF abundance with simulated N deposition suggests reduced C allocation to these fungi or a direct soil N-mediated decline. The fatty acid (phospholipid and neutral lipid fractions) 16:1omega5c was found to be a good indicator for AMF active biomass and stored energy, respectively.  相似文献   

18.
19.
20.
The interactive effects of ozone and light on leaf structure, carbon dioxide uptake and short-term carbon allocation of sugar maple ( Acer saccharum Marsh.) seedlings were examined using gas exchange measurements and 14C-macroautoradiographic techniques. Two-year-old sugar maple seedlings were fumigated from budbreak for 5 months with ambient or 3 × ambient ozone in open-top chambers, receiving either 35% (high light) or 15% (low light) of full sunlight. Ozone accelerated leaf senescence, and reduced net photosynthesis, 14CO2 uptake and stomatal conductance, with the effects being most pronounced under low light. The proportion of intercellular space increased in leaves of seedlings grown under elevated ozone and low light, possibly enhancing the susceptibility of mesophyll cells to ozone by increasing the cumulative dose per mesophyll cell. Indeed, damage to spongy mesophyll cells in the elevated ozone × low light treatment was especially frequent. 14C macroautoradioraphy revealed heterogeneous uptake of 14CO2 in well defined areole regions, suggesting patchy stomatal behaviour in all treatments. However, in seedlings grown under elevated ozone and low light, the highest 14CO2 uptake occurred along larger veins, while interveinal regions exhibited little or no uptake. Although visible symptoms of ozone injury were not apparent in these seedlings, the cellular damage, reduced photosynthetic rates and reduced whole-leaf chlorophyll levels corroborate the visual scaling of whole-plant senescence, suggesting that the ozone × low light treatment accelerated senescence or senescence-like injury in sugar maple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号