共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertical Distribution of Methanogens in the Anoxic Sediment of Rotsee (Switzerland) 总被引:5,自引:6,他引:5
下载免费PDF全文

K. Zepp Falz C. Holliger R. Großkopf W. Liesack A. N. Nozhevnikova B. Müller B. Wehrli D. Hahn 《Applied microbiology》1999,65(6):2402-2408
Anoxic sediments from Rotsee (Switzerland) were analyzed for the presence and diversity of methanogens by using molecular tools and for methanogenic activity by using radiotracer techniques, in addition to the measurement of chemical profiles. After PCR-assisted sequence retrieval of the 16S rRNA genes (16S rDNA) from the anoxic sediment of Rotsee, cloning, and sequencing, a phylogenetic analysis identified two clusters of sequences and four separated clones. The sequences in cluster 1 grouped with those of Methanosaeta spp., whereas the sequences in cluster 2 comprised the methanogenic endosymbiont of Plagiopyla nasuta. Discriminative oligonucleotide probes were constructed against both clusters and two of the separated clones. These probes were used subsequently for the analysis of indigenous methanogens in a core of the sediment, in addition to domain-specific probes against members of the domains Bacteria and Archaea and the fluorescent stain 4′,6-diamidino-2-phenylindole (DAPI), by fluorescent in situ hybridization. After DAPI staining, the highest microbial density was obtained in the upper sediment layer; this density decreased with depth from (1.01 ± 0.25) × 1010 to (2.62 ± 0.58) × 1010 cells per g of sediment (dry weight). This zone corresponded to that of highest metabolic activity, as indicated by the ammonia, alkalinity, and pH profiles, whereas the methane profile was constant. Probes Eub338 and Arch915 detected on average 16 and 6% of the DAPI-stained cells as members of the domains Bacteria and Archaea, respectively. Probe Rotcl1 identified on average 4% of the DAPI-stained cells as Methanosaeta spp., which were present throughout the whole core. In contrast, probe Rotcl2 identified only 0.7% of the DAPI-stained cells as relatives of the methanogenic endosymbiont of P. nasuta, which was present exclusively in the upper 2 cm of the sediment. Probes Rotp13 and Rotp17 did not detect any cells. The spatial distribution of the two methanogenic populations corresponded well to the methane production rates determined by incubation with either [14C]acetate or [14C]bicarbonate. Methanogenesis from acetate accounted for almost all of the total methane production, which concurs with the predominance of acetoclastic Methanosaeta spp. that represented on average 91% of the archaeal population. Significant hydrogenotrophic methanogenesis was found only in the organically enriched upper 2 cm of the sediment, where the probably hydrogenotrophic relatives of the methanogenic endosymbiont of P. nasuta, accounting on average for 7% of the archaeal population, were also detected. 相似文献
2.
3.
Chan OC Claus P Casper P Ulrich A Lueders T Conrad R 《Environmental microbiology》2005,7(8):1139-1149
Detailed studies on the relation of structure and function of microbial communities in a sediment depth profile scarcely exist. We determined as functional aspect the vertical distribution of the acetotrophic and hydrogenotrophic CH4 production activity by measuring production rates and stable 13C/12C-isotopic signatures of CH4 in the profundal sediment of Lake Dagow. The structural aspect was determined by the composition of the methanogenic community by quantifying the abundance of different archaeal groups using 'real-time' polymerase chain reaction and analysis of terminal restriction fragment length polymorphism (T-RFLP). Methane production rates in the surface sediment (0-3 cm depth) were higher in August than in May, but strongly decreased with depth (down to 20 cm). The delta13C of the produced CH4 and CO2 indicated an increase in isotopic fractionation with sediment depth. The relative contribution of hydrogenotrophic to total methanogenesis, which was calculated from the isotopic signatures, increased with depth from about 22% to 38%. Total numbers of microorganisms were higher in August than in May, but strongly decreased with depth. The increase of microorganisms from May to August mainly resulted from Bacteria. The Archaea, on the other hand, exhibited a rather constant abundance, but also decreased with depth from about 1 x 10(8) copies of the archaeal 16S rRNA gene per gram of dry sediment at the surface to 4 x 10(7) copies per gram at 15-20 cm depth. T-RFLP analysis combined with phylogenetic analysis of cloned sequences of the archaeal 16S rRNA genes showed that the methanogenic community consisted mainly of Methanomicrobiales and Methanosaetaceae. The relative abundance of Methanosaetaceae decreased with depth, whereas that of Methanomicrobiales slightly increased. Hence, the vertical distribution of the functional characteristics (CH4 production from acetate versus H2/CO2) was reflected in the structure of the community consisting of acetotrophic (Methanosaetaceae) versus hydrogenotrophic (Methanomicrobiales) phenotypes. 相似文献
4.
Vertical distribution and chemical character of sediment phosphorus in two shallow estuaries in the Baltic Sea 总被引:3,自引:1,他引:3
The vertical distribution of various phosphorus (P) forms and their relation to physico-chemical properties of estuary sediment material were studied to better understand the potential release and burial of P. Core samples were taken from two dissimilar estuaries in the Baltic Sea: one in the Archipelago Sea (AS) and one in the Gulf of Finland (GoF). The P reserves were characterized by a sequential extraction procedure including the analysis of simultaneously dissolved elements in two extraction steps. The sediment material was also analysed for particle size distribution and total elements. In addition, several environmental variables were determined. The occurrence of the various forms of P varied with sediment depth among different sites. Reductant soluble, iron (Fe) bound P was the most dynamically changing P form in the sediment, while P bound to other metal oxides and apatite-P were the most stable fractions. High sedimentation rate was a dominating factor for sediment P burial. In addition, the content of organic matter, the amount of erosion-transported sorption components, and the oxygen (O2) conditions in the near-bottom water were important determinants of the behaviour of sediment P. The results indicate that, over the long term, both estuaries have acted as sinks for deposited P and restricted the transport of P to the AS and the open GoF, thereby partly alleviating the eutrophication process. 相似文献
5.
Quinoline (Q) and some isomers of methylquinoline (MQ) were transformed to hydroxylated products in freshwater sediment slurries incubated under methanogenic conditions at 25 °C. Methylquinoline transformation was not affected by a methyl group on the C-3 or C-4 carbon atom of the pyridine ring; 2-MQ, however, was not transformed. All isomers of dimethylquinoline (DMQ) tested (2,4-, 2,6-, 2,7-, and 2,8-DMQ) with a methyl group at the number 2 carbon also persisted in sediments after anaerobic incubation for one year at 25 °C.In most experiments, quinoline initially was transformed to 2-hydroxyquinoline (2-OH-Q), which was further metabolized to unidentified products. A second product, 4-CH3-2-OH-Q, was detected in some experiments. This product accumulated and was not further transformed. 6-, 7-, and 8-Methylquinoline (6-, 7-, 8-MQ) were hydroxylated to form the respective 2-OH-MQ products. These hydroxylated products accumulated and were not further transformed. Hydroxylation of Q and 6-, 7- and 8-MQ at the 2-carbon position was confirmed by GC/FTIR and GC/MS analyses. The transformations of Q and MQs were pH dependent with an optimal pH of 7–8.The results of this study suggest that two pathways may exist for the anaerobic transformation of quinoline; one pathway leads to the formation of a hydroxylated intermediate and the other to a methylated and hydroxylated intermediate. In addition, our results suggest that a methyl substituent on the number 2 carbon inhibits the anaerobic transformation of quinoline derivatives.Abbreviations GC
gas chromatography
- GC/FTIR
gas chromatography/Fourier transform infrared spectrometry
- GC/MS
gas chromatography/mass spectrometry
- HPLC
high performance liquid chromatography
- MQ
methylquinoline
- Q
quinoline 相似文献
6.
Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw 总被引:2,自引:0,他引:2
The interaction between phototrophic dinitrogen fixers and methanogens was examined in soil slurries amended with rice straw using 2-bromoethanesulfonic acid (BES), a specific methanogenic inhibitor. Slurries incubated in light increased phototrophic nitrogenase activity (acetylene reducing activity), and showed growth of phototrophic purple bacteria and reduction of CH(4) emission, indicating outcompetition of purple bacteria with methanogens in photic zones. Adding BES effectively inhibited methane production and markedly increased phototrophic acetylene reducing activity accompanied with acetate accumulation, but did not affect populations of purple bacteria in the slurries. More acetate accumulated in the inhibited slurries incubated in dark. We suggest that increased availability of organic substrates for purple bacteria after stopping methanogenic consumption by BES caused the increased phototrophic acetylene reducing activity. These results indicate that, after purple bacteria grow enough, performance of their N(2) fixation may be limited by substrate availability, which methanogenesis may profoundly influence. 相似文献
7.
Laverman AM Meile C Van Cappellen P Wieringa EB 《Applied and environmental microbiology》2007,73(1):40-47
Denitrifying activity in a sediment from the freshwater part of a polluted estuary in northwest Europe was quantified using two independent approaches. High-resolution N(2)O microprofiles were recorded in sediment cores to which acetylene was added to the overlying water and injected laterally into the sediment. The vertical distribution of the rate of denitrification supported by nitrate uptake from the overlying water was then derived from the time series N(2)O concentration profiles. The rates obtained for the core incubations were compared to the rates predicted by a forward reactive transport model, which included rate expression for denitrification calibrated with potential rate measurements obtained in flowthrough reactors containing undisturbed, 1-cm-thick sediment slices. The two approaches yielded comparable rate profiles, with a near-surface, 2- to 3-mm narrow zone of denitrification and maximum in situ rates on the order of 200 to 300 nmol cm(-3) h(-1). The maximum in situ rates were about twofold lower than the maximum potential rate for the 0- to 1-cm depth interval of the sediment, indicating that in situ denitrification was nitrate limited. The experimentally and model-derived rates of denitrification implied that there was nitrate uptake by the sediment at a rate that was on the order of 50 (+/- 10) nmol cm(-2) h(-1), which agreed well with direct nitrate flux measurements for core incubations. Reactive transport model calculations showed that benthic uptake of nitrate at the site is particularly sensitive to the nitrate concentration in the overlying water and the maximum potential rate of denitrification in the sediment. 相似文献
8.
Lomans BP Op den Camp HJ Pol A van der Drift C Vogels GD 《Applied and environmental microbiology》1999,65(5):2116-2121
The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 micromol of DMS was stoichiometrically converted into 112 micromol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments. 相似文献
9.
Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment 总被引:13,自引:0,他引:13
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14 C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2 , however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway. 相似文献
10.
Contamination, such as by heavy metals, has frequently been implicated in altering microbial community structure. However, this association has not been extensively studied for anaerobic communities, or in freshwater lake sediments. We investigated microbial community structure in the metal-contaminated anoxic sediments of a eutrophic lake that were impacted over the course of 80 years by nearby zinc-smelting activities. Microbial community structure was inferred for bacterial, archaeal and eukaryotic populations by evaluating terminal restriction fragment length polymorphism (TRFLP) patterns in near-surface sediments collected in triplicate from five areas of the lake that had differing levels of metal contamination. The majority of the fragments in the bacterial and eukaryotic profiles showed no evidence of variation in association with metal contamination levels, and diversity revealed by these profiles remained consistent even as metal concentrations varied from 3000 to 27 000 mg kg−1 total Zn, 0.125 to 11.2 μ pore water Zn and 0.023 to 5.40 μ pore water As. Although most archaeal fragments also showed no evidence of variation, the prevalence of a fragment associated with mesophilic Crenarchaeota showed significant positive correlation with total Zn concentrations. This Crenarchaeota fragment dominated the archaeal TRFLP profiles, representing between 35% and 79% of the total measured peak areas. Lake DePue 16S rRNA gene sequences corresponding to this TRFLP fragment clustered with anaerobic and soil mesophilic Crenarchaeota sequences. Although Crenarchaeota have been associated with metal-contaminated groundwater and soils, this is a first report (to our knowledge) documenting potential increased prevalence of Crenarchaeota associated with elevated levels of metal contamination. 相似文献
11.
Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment 总被引:3,自引:0,他引:3
Boschker HT de Graaf W Köster M Meyer-Reil L Cappenberg TE 《FEMS microbiology ecology》2001,35(1):97-103
Bacterial populations and pathways involved in acetate and propionate consumption were studied in anoxic brackish sediment from the Grosser Jasmunder Bodden, German Baltic Sea. Uptake of acetate and propionate from the porewater was studied using stable carbon isotope-labeled compounds. Labeled acetate was not produced as an intermediate during propionate uptake experiments, and propionate consumption was not affected by the addition of acetate. In parallel, incorporation of labeled acetate and propionate into phospholipid-derived fatty acids (PLFA) was studied to indicate bacterial populations involved in the consumption of these substrates. The (13)C-acetate label was mainly recovered in even-numbered PLFA (16:1omega7c, 16:0 and 18:1omega7c). In contrast, primarily odd-numbered PLFA (a15:0, 15:0, 17:1omega6 and 17:0) and the even-numbered i16:0 were labeled after incubation with (13)C-propionate. Although single PLFA labeled with propionate are commonly found in sulfate reducers, the complete PLFA-labeling pattern does not resemble any of the know strains. However, the acetate-labeling pattern is similar to Desulfotomaculum acetoxidans and Desulfofrigus spp., two acetate-consuming, sulfate reducers. In conclusion, our data suggest that acetate and propionate were predominantly consumed by different, specialized groups of sulfate-reducing bacteria. 相似文献
12.
13.
The halogenated compound tetrachloroethene (perchloroethene, PCE) is a persistent contaminant of aquifers, soils and sediments. Although a number of microorganisms are known to reductively dechlorinate PCE by dehalorespiration, their diversity and community structure especially in pristine environments remain elusive. In this study, we report on the detection of a novel group of dehalorespiring bacteria that reductively dechlorinate PCE to cis -dichloroethene by RNA-based stable isotope probing. Pristine river sediment was incubated at 15°C with PCE at low aqueous concentration. Upon formation of dechlorination products, the microbial community was probed with 13 C-labelled acetate as electron donor and carbon source. Terminal restriction fragment length polymorphism (T-RFLP) analysis of density-separated 16S rRNA revealed a predominantly 13 C-labelled bacterial population only in the microcosm with PCE in high-density gradient fractions, whereas in the control without PCE Bacteria-specific rRNA was restricted to light gradient fractions. By cloning and sequence analysis of 16S rRNA, the predominant population was identified as a novel group of bacteria within the phylum Chloroflexi . These microorganisms, designated Lahn Cluster (LC), were only distantly related to cultivated dehalorespiring Dehalococcoides spp. (92–94% sequence identity). Minor clone groups detected 13 C-labelled and thus, potentially involved in PCE dehalorespiration, were related to β-proteobacterial Dechloromonas spp., and δ- Proteobacteria ( Geobacteraceae , Desulfobacteraceae , Desulfobulbaceae ). In contrast, clones from an ethene-producing microcosm incubated at 20°C grouped with known Dehalococcoides spp. Our results show that stable isotope probing allows targeting dehalorespiring bacteria as functional guild, and to identify novel PCE-respiring populations previously not recognized. 相似文献
14.
Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA 总被引:1,自引:0,他引:1
Cadillo-Quiroz H Bräuer S Yashiro E Sun C Yavitt J Zinder S 《Environmental microbiology》2006,8(8):1428-1440
Northern acidic peatlands are important sources of atmospheric methane, yet the methanogens in them are poorly characterized. We examined methanogenic activities and methanogen populations at different depths in two peatlands, McLean bog (MB) and Chicago bog (CB). Both have acidic (pH 3.5-4.5) peat soils, but the pH of the deeper layers of CB is near-neutral, reflecting its previous existence as a neutral-pH fen. Acetotrophic and hydrogenotrophic methanogenesis could be stimulated in upper samples from both bogs, and phylotypes of methanogens using H2/CO2 (Methanomicrobiales) or acetate (Methanosarcinales) were identified in 16S rRNA gene clone libraries and by terminal restriction fragment length polymorphism (T-RFLP) analyses using a novel primer/restriction enzyme set that we developed. Particularly dominant in the upper layers was a clade in the Methanomicrobiales, called E2 here and the R10 or fen group elsewhere, estimated by quantitative polymerase chain reaction to be present at approximately 10(8) cells per gram of dry peat. Methanogenic activity was considerably lower in deeper samples from both bogs. The methanogen populations detected by T-RFLP in deeper portions of MB were mainly E2 and the uncultured euryarchaeal rice cluster (RC)-II group, whereas populations in the less acidic CB deep layers were considerably different, and included a Methanomicrobiales clade we call E1-E1', as well as RC-I, RC-II, marine benthic group D, and a new cluster that we call the subaqueous cluster. E2 was barely detectable in the deeper samples from CB, further evidence for the associations of most organisms in this group with acidic habitats. 相似文献
15.
Eukaryotic molecular diversity within the picoplanktonic size-fraction has primarily been studied in marine surface waters. Here, the vertical distribution of picoeukaryotic diversity was investigated in the Sargasso Sea from euphotic to abyssal waters, using size-fractionated samples (< 2 microm). 18S rRNA gene clone libraries were used to generate sequences from euphotic zone samples (deep chlorophyll maximum to the surface); the permanent thermocline (500 m); and the pelagic deep-sea (3000 m). Euphotic zone and deep-sea data contrasted strongly, the former displaying greater diversity at the first-rank taxon level, based on 232 nearly full-length sequences. Deep-sea sequences belonged almost exclusively to the Alveolata and Radiolaria, while surface samples also contained known and putative photosynthetic groups, such as unique Chlorarachniophyta and Chrysophyceae sequences. Phylogenetic analyses placed most Alveolata and Stramenopile sequences within previously reported 'environmental' clades, i.e. clades within the Novel Alveolate groups I and II (NAI and NAII), or the novel Marine Stramenopiles (MAST). However, some deep-sea NAII formed distinct, bootstrap supported clades. Stramenopiles were recovered from the euphotic zone only, although many MAST are reportedly heterotrophic, making the observed distribution a point for further investigation. An unexpectedly high proportion of radiolarian sequences were recovered. From these, five environmental radiolarian clades, RAD-I to RAD-V, were identified. RAD-IV and RAD-V were composed of Taxopodida-like sequences, with the former solely containing Sargasso Sea sequences, although from all depth zones sampled. Our findings highlight the vast diversity of these protists, most of which remain uncultured and of unknown ecological function. 相似文献
16.
Vertical distribution and abundance of juvenile chaetognaths in the Weddell Sea (Antarctica) 总被引:2,自引:0,他引:2
The composition, abundance and vertical distribution of chaetognaths were analysed along a transect in the Weddell Sea during
late spring. Three species were identified: Eukrohnia hamata (90.8%), Sagitta marri (6.4%) and S. gazellae (2.8%). Only juvenile stages were collected in the samples, a result related both to the type of sampling gear employed (mesh
size: 100 μm) and the species' life-cycles. The vertical distributions showed that the juvenile stages of these species tended
to aggregate at considerable depth (1000–500 m). It is postulated that this pattern may be related to the life-cycles of these
species in association with seasonal Antarctic conditions, similar to the pattern postulated for krill and other polar crustaceans.
Accepted: 10 July 2000 相似文献
17.
18.
The concentrations of carbohydrates measured by gas chromatography in lakes of three different trophic levels have a tendancy to be lower than those measured by spectrophotometry. The concentrations of glucose and galactose were high in the euphotic zone of eutrophic lakes and the rhamnose was relatively high in the profundal zone. The ratio of the concentrations of each monosaccharide was relatively uniform from surface to bottom in a dystrophic lake. Glucose and galactose freshly produced in the euphotic zone might well be easily decomposed. 相似文献
19.
Monitoring nutrient impact on bacterial community composition during bioremediation of anoxic PAH-contaminated sediment 总被引:1,自引:0,他引:1
Myungsu Kim Seung Seob Bae Mijin Seol Jung-Hyun Lee Young-Sook Oh 《Journal of microbiology (Seoul, Korea)》2008,46(6):615-623
Marine harbor sediments are frequently polluted with significant amount of polycyclic aromatic hydrocarbons (PAHs) some of
which are naturally toxic, recalcitrant, mutagenic, and carcinogenic. To stimulate biodegradation of PAHs in PAH-contaminated
sediments collected from near Gwangyang Bay, Korea, lactate was chosen as a supplementary carbonaceous substrate. Sediment
packed into 600 ml air-tight jar was either under no treatment condition or lactate amended condition (1%, w/v). Microbial
community composition was monitored by bacteria-specific and archaea-specific PCR-terminal restriction fragment length polymorphism
(T-RFLP), in addition to measuring the residual PAH concentration. Results showed that lactate amendment enhanced biodegradation
rate of PAHs in the sediment by 4 to 8 times, and caused a significant shift in archaebacterial community in terms of structure
and diversity with time. Phylogenetic analysis of 23 archaeal clones with distinctive RFLP patterns among 288 archaeal clones
indicated that majority of the archaeal members were closest to unculturable environmental rDNA clones from hydrocarbon-contaminated
and/or methanogenesis-bearing sediments. Lactate amendment led to the enrichment of some clones that were most closely related
to PAH-degrading Methanosarcina species. These results suggest a possible contribution of methanogenic community to PAH degradation and give us more insights
on how to effectively remediate PAH-contaminated sediments. 相似文献
20.
B. Grinde 《Polar Biology》1983,2(3):159-162
Summary
Chlamydomonas nivalis commonly forms large blooms, visible as a red coloration, in the snow during summer. Fewer algae are seen in the top layer of snow during days of intense sunlight than on cloudy days. The present experiments were done to investigate this change of vertical distribution of algae. Apparently the algae are able to associate with the watersurface surrounding snow crystals. Due to this association they avoid being washed away by the water from melting snow. Intense sunlight, however, decreases the degree to which the algae associate with the water-surface, and thereby increasing the number of algae being removed from the top layer of snow by the melting water. If the weather becomes cloudy again, the algae do not move upwards, but stay attached to the water-surfaces. Thus when the snow above melts, they will reappear in the top layer. 相似文献