首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
The effect of aphidicolin, a specific inhibitor of DNA polymerase alpha, on size maturation of nascent DNA intermediates was studied in cultured rat fibroblast cells. Results provided the first evidence of DNA synthesis associated with merging of intermediates of larger than replicon size. Aphidicolin at a concentration (1.4 micrograms/ml) causing 90-95% inhibition of [3H]thymidine incorporation, resulted in accumulation of intermediates of nearly the same size as the replicon (2-5 x 10(-7) Da); although the synthesis of short nascent fragments (referred to as Okazaki fragments) continued in the presence of aphidicolin, the rate of their elongation to the replicon size was greatly decreased. On removal of aphidicolin, these accumulated intermediates merged into high-molecular-weight DNA. This merging of the intermediates was associated with DNA synthesis in gaps between adjacent intermediates, as revealed by photolysis of bromodeoxyuridine-DNA leader with long-wave ultraviolet light; when the cells had been pulse-labeled for 5 min with bromodeoxyuridine immediately after removal of the drug, the large DNA arising from aphidicolin-arrested intermediates was cut into fragments of the original size by long-wave ultraviolet light irradiation. The arrest of chain elongation at the replicon-size by aphidicolin might be due to inhibition of this DNA synthesis in gaps, because aphidicolin did not cause degradation of nascent DNAs.  相似文献   

2.
We have exposed confluent normal human fibroblasts to ultraviolet (UV) fluences of 5, 14, or 40 J/m2 and monitored the specific activity of post-UV repair synthesis in chromatin with [3H]thymidine pulses. We have shown that under conditions where no semiconservative deoxyribonucleic acid (DNA) synthesis is detectable, the specific activity of repair label in micrococcal nuclease resistant (core particle) DNA is about one-fifth that in bulk DNA at all three UV fluences. On the other hand, the distribution of thymine-containing pyrimidine dimers in bulk and nuclease-resistant regions measured either immediately after irradiation or at later times showed no significant differences; preferential labeling of linker (nuclease-sensitive) DNA during repair synthesis is thus apparently not due to a predominance of UV-induced photoproducts in linker relative to core particle DNA in the nucleosome. Pulse and pulse--chase experiments at 14 or 40 J/m2 with normal human or repair-deficient xeroderma pigmentosum (XP) cells showed that at most 30% of repair label in all these cells shifts from nuclease-sensitive (linker) DNA to nuclease-resistant (core particle) DNA.  相似文献   

3.
Single-cell and DNA fiber autoradiography, cytophotometry and velocity sedimentation in alkaline sucrose gradients were used to analyse DNA replication and nascent replicon maturation in 5-fluorodeoxyuridine (FUdR)-synchronized cells of Pisum sativum. The replicon size was not significantly changed by the protracted FUdR treatment. When the synchronized cells were released from the inhibitor, labeled with [3H]TdR for 30 min, and chased in medium containing 1 × 10−6 M or lower concentrations of cold thymidine, DNA replication stopped after approx. 25% of the genome had replicated, and the nascent strands failed to grow above 9–12 × 106 D single-stranded (ss) DNA. When the cells were chased in medium with 1 × 10−5 M cold thymidine, the DNA content of the labeled cells steadily increased with time and the size of the nascent molecules grew continuously until replicon size was achieved; then they were accumulated at replicon size until the cells arrived in late S or G2. When the FUdR-synchronized cells were chased in medium containing 1 × 10−4 M cold thymidine, the size of the nascent strands increased continuously with time, indicating that some neighbouring nascent replicons were joined as soon as they completed their replication. These observations led us to postulate that in FUdR-synchronized cells the rates of chain elongation, cell progression through the S phase and nascent replicon maturation are controlled by thymidine availability.  相似文献   

4.
Individuals with Xeroderma pigmentosum (XP) syndrome have a genetic predisposition to sunlight-induced skin cancer. Genetically different forms of XP have been identified by cell fusion. Cells of individuals expressing the classical form of XP (complementation groups A through G) are deficient in the nucleotide excision repair (NER) pathway. In contrast, the cells belonging to the variant class of XP (XPV) are NER-proficient and are only slightly more sensitive than normal cells to the killing action of UV light radiation. The XPV fibroblasts replicate damaged DNA generating abnormally short fragments either in vivo [A.R. Lehmann, The relationship between pyramidine dimers and replicating DNA in UV-irradiated human fibroblasts, Nucleic Acids Res. 7 (1979) 1901-1912; S.D. Park, J.E. Cleaver, Postreplication repair: question of its definition and possible alteration in Xeroderma pigmentosum cell strains, Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3927-3931.] or in vitro [S.M. Cordeiro, L.S. Zaritskaya, L.K. Price, W.K. Kaufmann, Replication fork bypass of a pyramidine dimer blocking leading strand DNA synthesis, J. Biol. Chem. 272 (1997) 13945-13954; D.L. Svoboda, L.P. Briley, J.M. Vos, Defective bypass replication of a leading strand cyclobutane thymine dimer in Xeroderma pigmentosum variant cell extracts, Cancer Res. 58 (1998) 2445-2448; I. Ensch-Simon, P.M. Burgers, J.S. Taylor, Bypass of a site-specific cis-syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts, Biochemistry 37 (1998) 8218-8226.], suggesting that in XPV cells, replication has an increased probability of being blocked at a lesion. Furthermore, extracts from XPV cells were found to be defective in translesion synthesis [A. Cordonnier, A.R. Lehmann, R.P.P. Fuchs, Impaired translesion synthesis in Xeroderma pigmentosum variant extracts, Mol. Cell. Biol. 19 (1999) 2206-2211.]. Recently, Masutani et al. [C. Masutani, M. Araki, A. Yamada, R. Kusomoto, T. Nogimori, T. Maekawa, S. Iwai, F. Hanaoka, Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity, EMBO J. 18 (1999) 3491-3501.] have shown that the XPV defect can be corrected by a novel human DNA polymerase, homologue to the yeast DNA polymerase eta, which is able to replicate past cyclobutane pyrimidine dimers in DNA templates. This review focuses on our current understanding of translesion synthesis in mammalian cells whose defect, unexpectedly, is responsible for the hypermutability of XPV cells and for the XPV pathology.  相似文献   

5.
Inhibition of mammalian cell DNA synthesis by ionizing radiation   总被引:4,自引:0,他引:4  
A semi-log plot of the inhibitory effect of ionizing radiation on the rate of DNA synthesis in normal mammalian cells yields a two-component curve. The steep component, at low doses, has a D0 of about 5 Gy and is the result of blocks to initiation of DNA replicons. The shallow component, at high doses, has a D0 of greater than or equal to 100 Gy and is the result of blocks to DNA chain elongation. The target size for the inhibition of DNA replicon initiation is about 1000 kb, and the target size for inhibition of DNA chain elongation is about 50 kb. There is evidence that the target for both components is DNA alone. Therefore, the target size for inhibition of DNA chain elongation is consistent with the idea that an effective radiation-induced lesion in front of the DNA growing point somehow blocks its advance. The target size for inhibition of DNA replicon initiation is so large that it must include many replicons, which is consistent with the concept that a single lesion anywhere within a large group (cluster) of replicons is sufficient to block the initiation of replication of all replicons within that cluster. Studies with radiosensitive human cell mutants suggest that there is an intermediary factor whose normal function is necessary for radiation-induced lesions to cause the inhibition of replicon initiation in clusters and to block chain elongation; this factor is not related to poly(ADP-ribose) synthesis. Studies with radiosensitive Chinese hamster cell mutants suggest that double-strand breaks and their repair are important in regulating the duration of radiation-induced inhibition of replicon initiation but have little to do with effects on chain elongation. There is no simple correlation between inhibition of DNA synthesis and cell killing by ionizing radiation.  相似文献   

6.
A new method is described for estimating replicon sizes in mammalian cells. Cultures were pulse labeled with [3H]thymidine ([3H]TdR) and bromodeoxyuridine (BrdUrd) for up to 1 h. The lengths of the resulting labeled regions of DNA, Lobs, were estimated by a technique wherein the change in molecular weight of nascent DNA strands, induced by 313 nm light, is measured by velocity sedimentation in alkaline sucrose gradients. If cells are exposed to 1,000 rads of X-rays immediately before pulse labeling, initiation of replicon operation is blocked, although chain elongation proceeds almost normally. Under these conditions Lobs continues to increase only until operating replicons have completed their replication. This value for Lobs then remains constant as long as the block to initiation remains and represents an estimate for the average size of replicons operating in the cells before X-irradiation. For human diploid fibroblasts and human HeLa cells this estimated average size is approximately 17 micron, whereas for Chinese hamster ovary cells, the average replicon size is about 42 micron.  相似文献   

7.
The heritable DNA repair defect in human Xeroderma D cells, which results in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for the dominant marker plus resistance to killing by u.v. light, have been shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation have been correlated both with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most of the transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. These results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell.  相似文献   

8.
DNA synthesis was examined in ultraviolet (uv)-irradiated ICR 2A frog cells in which either pyrimidine dimers or nondimer photoproducts represented the major class of DNA lesions. Dimers were induced by exposure of cells to 254 nm uv, while nondimer photoproducts were induced by irradiation of cells with uv produced by a fluorescent sunlamp (FSL) that was filtered through 48A Mylar (removes wavelengths less than 310 nm). The FSL-irradiated cultures were also treated with photoreactivating light (PRL) which removed most of the small number of dimers induced by the irradiation, leaving a relatively pure population of nondimer photoproducts. In addition, cells were exposed to 60Co gamma rays. The cultures were pulse-labeled and the size distribution of the DNA synthesized was estimated using both sucrose gradient sedimentation and alkaline step elution. Using either of these techniques, it was found that the presence of dimers resulted in a reduction principally in the synthesis of high molecular weight (MW) DNA. In contrast, nondimer photoproducts caused a strong inhibition in the synthesis of low MW DNA, as was also observed in gamma-irradiated cells. Hence the induction of pyrimidine dimers in DNA mainly affected the elongation of replicons, whereas nondimer lesions primarily caused an inhibition of replicon initiation.  相似文献   

9.
To investigate the inhibition of DNA replication by tumor promoters, we incubated HeLa cells with 12-O-tetradecanoylphorbol-13-acetate (TPA; 10?8 to 10?5 g/ml) and quantified DNA synthesis on alkaline sucrose gradients. TPA was found to selectively inhibit replicon initiation without affecting DNA chain elongation in replicons that had already initiated. No inhibition of DNA synthesis was seen when cells were exposed to the nonpromoting derivative of TPA, 4-α-phorbol 12,13-didecanoate. Superoxide dismutase did not prevent the TPA-induced inhibition of initiation.  相似文献   

10.
11.
The inhibition of DNA synthesis in normal human cells by UV is a complex function of fluence because it has several causes. At low fluences, inhibition of replicon initiation is most important. This is made clear by the fact that it occurs to a lesser degree in cells from patients with ataxia telangiectasia (AT). Assuming that only leading strand synthesis is blocked by UV-induced lesions, single lesions between replicons in parental strands for leading strand synthesis inhibit DNA synthesis by acting as temporary blocks until they are replicated by extension of the lagging strand of the adjacent replicon. A more severe inhibition occurs when two lesions are induced between adjacent growing replicons, because one in four possible configurations may result in a long-lived unreplicated region (LLUR). In the absence of excision repair, these may eventually be replicated by activation of an otherwise unused origin within the LLUR. The frequency of LLURs increases steeply with fluence. Activation of normally unused origins to replicate LLURs may facilitate recovery from inhibition of DNA synthesis, but repair of lesions is probably more important. In excision-repair-defective cells, an LLUR without an origin to initiate its replication may be a lethal lesion.  相似文献   

12.
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain.  相似文献   

13.
Do damage-inducible responses in mammalian cells alter the interaction of lesions with replication forks? We have previously demonstrated that preirradiation of the host cell mitigates UV inhibition of SV40 DNA replication; this mitigation can be detected within the first 30 min after the test irradiation. Here we test the hypotheses that this mitigation involves either (1) rapid dimer removal, (2) rapid synthesis of daughter strands past lesions (trans-dimer synthesis), or (3) continued progression of the replication fork beyond a dimer. Cells preirradiated with UV were infected with undamaged SV40, and the effects of UV upon viral DNA synthesis were measured within the first hour after a subsequent test irradiation. In preirradiated cells, as well as in non-preirradiated cells, pyrimidine dimers block elongation of daughter strands; daughter strands grow only to a size equal to the interdimer distance along the parental strands. There is, within this first hour after UV, no evidence for trans-dimer synthesis, nor for more rapid dimer removal either in the bulk of the parental DNA or in molecules in the replication pool. Progression of the replication forks was analyzed by electron microscopy of replicating SV40 molecules. Dimers block replication-fork progression in preirradiated cells to the same extent as in non-preirradiated cells. These experiments argue strongly against the hypotheses that preirradiation of host cells results in either the rapid removal of dimers, trans-dimer synthesis, or continued replication-fork progression beyond dimers.  相似文献   

14.
An analysis was made of the size maturation process of nascent DNA intermediates in macronuclear DNA replication of Tetrahymena pyriformis. The first discrete size class of nascent intermediates larger than Okazaki fragments were replicon-sized DNA (about 2 X 10(7) D single-stranded (ss) DNA) and accumulated in cells treated with cycloheximide. On removal of cycloheximide, the replicon-sized intermediates were converted to middle-sized intermediates (about 10 X 10(7) D ssDNA) and then merged into chromosomal-sized DNA. As indicated by either aphidicolin inhibition or the technique of the photolysis of bromodeoxyuridine (BrdU)-substituted DNA with long-wave ultraviolet light, four to eight replicon-sized intermediates were joined together to form a middle-sized intermediate after rapid sealing by DNA synthesis of the late-replicating regions located between adjacent replicon-sized intermediates. The late-replicating regions may represent the short gaps or terminal regions where DNA synthesis was retarded by cycloheximide, since the size of late-replicating regions was suggested to be shorter than the replicon size by DNA fiber autoradiography. Therefore, it is probable that four to eight completed replicons are joined as a group such as a replicon cluster, as has been reported in DNA replication of other eukaryotic cells.  相似文献   

15.
To synchronize SV40 replicons, simian cells infected with a tsA mutant were restricted at 40 degrees, to complete ongoing replication and returned to 32 degrees, to activate new replicons in the presence of the DNA chain elongation inhibitor aphidicolin. Upon further incubation at 40 degrees without the drug, 3H-dT was incorporated into SV40 FI DNA, almost to the extent seen with cells recovered in the absence of the drug. To determine whether DNA synthesis would begin from the origin, following the temperature-shifts-aphidicolin regimen, chains subsequently pulse-labeled with (alpha-32p)dGTP in isolated nuclei were analyzed for size distribution and genomic location. These chains reached up to 300-400 nucleotides in size, unlike the control which featured comparable amounts of label in long chains and Okazaki pieces. The nascent DNA of the drug-treated system could be chased into longer chains, indicating that it was a replicative intermediate; and it hybridized preferentially to an origin proximal fragment of AtuI- restricted SV40 DNA, demonstrating partial replicon synchronization. The data prove that T-antigen activates the SV40 replicon independent of DNA chain elongation and suggest means to study the mechanism of DNA chain priming at the origin.  相似文献   

16.
Irradiation with UV-A of normal human fibroblasts in phosphate-buffered saline induced cell death, measured as lack of colony-forming ability. A specially filtered sunlamp, emitting wavelengths greater than 330 nm, was used as UV-A source. After UV-A irradiation, single-strand breaks (alkali-labile bonds) could be detected in DNA; these lesions were rapidly repaired. The induction of these single-strand breaks was almost eliminated when irradiation was performed in the presence of catalase. However, catalase, when present during UV-A irradiation, did not reduce cell death of the fibroblasts. Excision repair, monitored as unscheduled DNA synthesis, was induced strongly by irradiation with UV-C (predominantly 254 nm), but could not be detected after UV-A irradiation. Moreover, very little accumulation of incision breaks during post-irradiation incubation with hydroxyurea and 1-beta-D-arabinofuranosylcytosine (araC) was detected after UV-A. This is consistent with the low amount of pyrimidine dimers (measured as UV-endonuclease susceptible sites) induced by UV-A. Xeroderma pigmentosum fibroblasts of complementation group A, which are extremely sensitive to UV-C irradiation, showed the same sensitivity to UV-A as normal fibroblasts. The results indicate that lethality by UV-A wavelengths greater than 330 nm is caused by lesions other than single-strand breaks (alkali-labile bonds) and pyrimidine dimers.  相似文献   

17.
DNA repair and replication were examined in diploid human fibroblasts after treatment with (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I). Unscheduled DNA synthesis exhibited a linear response to BPDE-I concentrations up to 1.5 microM and a saturation plateau after higher concentrations. Maximal unscheduled DNA synthesis was observed in the first hour after treatment with synthesis diminishing progressively thereafter. Half-maximal unscheduled DNA synthesis was seen within 4-6 h after treatment with 0.7 microM BPDE-I. DNA replication was inhibited by BPDE-I in a dose- and time-dependent fashion. The mechanisms of this inhibition were characterized by velocity sedimentation of pulse-labeled nascent DNA in alkaline sucrose gradients. Very low concentrations of BPDE-I (0.03 and 0.07 microM) were found to inhibit replicon initiation by up to 50% within 30-60 min after treatment. Recovery of initiation following these low concentrations was evident within 3 h after treatment. Higher concentrations of carcinogen inhibited DNA synthesis in active replicons. This effect was manifested by a reduction in incorporation of precursor into replication intermediates of greater than 1 X 10(7) Da with the concurrent production of abnormally small nascent DNA. When viewed 45 min after treatment with 0.17 microM BPDE-I the combination of these two effects partially masked the inhibition of replicon initiation. However, even after treatment with 0.33 microM BPDE-I an effect on initiation was evident. These results reveal a pattern of response to BPDE-I that is quite similar to that produced by 254 nm radiation.  相似文献   

18.
DNA synthesized in human cells after ultraviolet (UV) irradiation is made in segments of lower molecular weight than in unirradiated cells. Within several hours after irradiation these smaller units are both elongated and joined together. This repair process has been observed in normal human fibroblasts, HeLa cells, and fibroblasts derived from three types of xeroderma pigmentosum patients—uncomplicated with respect to neurological problems, complicated (de Sanctis-Cacchione syndrome), and one with the clinical symptoms of xeroderma pigmentosum but with normal repair replication. The ability of human cells to elongate and to join DNA strands despite the presence of pyrimidine dimers enables them to divide without excising the dimers present in their DNA. It may be this mechanism which enables xeroderma pigmentosum cells to tolerate small doses of UV radiation.  相似文献   

19.
Perturbations of Simian Virus 40 (SV40) DNA replication by ultraviolet (UV) light during the lytic cycle in permissive monkey CV-1 cells resemble those seen in host cell DNA replication. Formation of Form I DNA molecules (i.e. completion of SV40 DNA synthesis) was more sensitive to UV irradiation than synthesis of replicative intermediates or Form II molecules, consistent with inhibition of DNA chain elongation. The observed amounts of [3H]thymidine incorporated in UV-irradiated molecules could be predicted on the assumption that pyrimidine dimers are responsible for blocking nascent DNA strand growth. The relative proportion of labeled Form I molecules in UV-irradiated cultures rapidly increased to near-control values with incubation after 20 or 40 J/m2 of light (0.9--1.0 or 1.8--2.0 dimers per SV40 genome, respectively). This rapid increase and the failure of Form II molecules to accumulate suggest that SV40 growing forks can rapidly bypass many dimers. Form II molecules formed after UV irradiation were not converted to linear (Form III) molecules by the dimer-specific T4 endonuclease V, suggesting either that there are no gaps opposite dimers in these molecules or that T4 endonuclease V cannot use Form II molecules as substrates.  相似文献   

20.
The formation and excision of UV-C light-induced cyclobutane-type pyrimidine photodimers were determined in cultures of human skin fibroblasts at time zero and several weeks following treatment with mitomycin C (MMC). Characteristic morphological changes of the fibroblasts and specific shifts in the [35S]methionine polypeptide pattern of total cellular proteins support the notion that MMC accelerates the differentiation pathway from mitotic (MF) to post-mitotic fibroblasts (PMF). No discernible difference could be detected between the fluence-response curves of pyrimidine dimers for untreated and MMC-treated repair-deficient xeroderma pigmentosum cells of group A. Furthermore we investigated the removal of pyrimidine dimers in 3 normal human skin fibroblast strains frequently used in mutation, transformation and aging research. We were able to demonstrate that no significant difference exists in the rate and extent of the excision-repair response to thymine-containing pyrimidine dimers following UV-irradiation shortly after MMC treatment of fibroblasts and in the MMC-induced PMF stage of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号