首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ethylene regulation of fruit ripening: Molecular aspects   总被引:19,自引:0,他引:19  
Progress in ethylene regulating fruit ripening concerning itsperception and signal transduction and expression of ACC synthaseand ACC oxidase genes is reviewed. ACC synthase and ACC oxidasehave been characterized and their genes cloned from various fruittissues. Both ACC synthase and ACC oxidase are encoded bymultigene families, and their activities are associated withfruit ripening. In climacteric fruit, the transition toautocatalytic ethylene production appears to be due to a seriesof events in which ACC sythase and ACC oxidase genes have beenexpressed developmentally. Differential expression of ACCsynthase and ACC oxidase gene family members is probably involvedin such a transition that ultimately controls the onset of fruitripening.In comparison to ACC synthase and ACC oxidase, less is knownabout ethylene perception and signal transduction because of thedifficulties in isolating and purifying ethylene receptors orethylene-binding proteins using biochemical methods. However, theidentification of the Nr tomato ripening mutant as anethylene receptor, the applications of new potent anti-ethylenecompounds and the generation of transgenic fruits with reducedethylene production have provided evidence that ethylenereceptors regulate a defined set of genes which are expressedduring fruit ripening. The properties and functions of ethylenereceptors, such as ETR1, are being elucidated.Application of molecular genetics, in combination withbiochemical approaches, will enable us to better understand theindividual steps leading from ethylene perception and signaltransduction and expression of ACC synthase and ACC oxidase genefamily member to the physiological responses.  相似文献   

4.
5.
6.
Ripening of climacteric fruit is a complex developmental process that includes many changes in gene expression. Some ripening-regulated genes are responsive to ethylene and/or wounding signals. Wounding increased Pm-ACS1 expression in Prunus mume (Japanese apricot), but was negatively regulated by ethylene. However, exposure of freshly harvested mature green mume fruit to ethylene induced PmACS1 . Fifteen complementary DNA clones corresponding to messenger RNAs differentially expressed in the pericarp of P. mume fruit in response to ripening, ethylene and wounding signals were isolated by differential display. Quantitative real-time PCR analysis distinctly showed that these genes are differentially regulated. Genes that were upregulated during fruit ripening include Pm15 (cinnamyl-alcohol dehydrogenase), Pm21 (2-oxoacid-dependent dioxygenase), Pm22 (1-acyl- sn -glycerol-3-phosphate acyltransferase), Pm27 (unknown function), Pm38 (alcohol dehydrogenase), Pm41 (no homology), Pm52 (no homology), Pm65 (pectate lyase), Pm68 (expansin), Pm69 (serine carboxypeptidase) and Pm94 (alcohol acyltransferase). Expression of most of these genes was also inducible by ethylene and some of them were inducible by wounding. Pm3 (water channel protein, MIP) and Pm8 (unknown function) were downregulated during ripening. Expression of Pm71 (no homology) and Pm74 (NAC family protein) did not increase during ripening or in response to ethylene, but was upregulated in response to wounding. The possible physiological roles of these genes during ripening and in response to ethylene and wounding are discussed.  相似文献   

7.
Diazocyclopentadiene (DACP), a competitive ethylene action inhibitor binds irreversibly to the ethylene receptor to reduce tissue responses to ethylene. Tomato fruit (Lycopersicon esculentum Mill cv lsquo;Rondellorsquo;) were treated with DACP at the mature green stage. Ethylene biosynthesis and respiration rate were depressed. Color changes from green to red were delayed. Compared to the control, ACC content increased and ACC oxidase activity in vivo decreased in DACP-treated fruit. Thus, decrease of ethylene production caused by DACP treatment was due to the reduction of ACC oxidase activity. The decline in ripening subsequently recovered after DACP treatment. Results from the Northern analysis for gene expression of ACC synthase and ACC oxidase, showed that expression of both genes declined in DACP-treated fruit, and then recovered. Therefore the recovery of ethylene production was due to the recovery in gene expression and activity of ACC oxidase. We conclude that the effects of DACP on ethylene biosynthesis are on expression of ACC synthase and ACC oxidase genes, and/or regulation of ACC oxidase activity.  相似文献   

8.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

9.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

10.
We investigated the function of the tomato (Lycopersicon esculentum) E8 gene. Previous experiments in which antisense suppression of E8 was used suggested that the E8 protein has a negative effect on ethylene evolution in fruit. E8 is expressed in flowers as well as in fruit, and its expression is high in anthers. We introduced a cauliflower mosaic virus 35S-E8 gene into tomato plants and obtained plants with overexpression of E8 and plants in which E8 expression was suppressed due to co-suppression. Overexpression of E8 in unripe fruit did not affect the level of ethylene evolution during fruit ripening; however, reduction of E8 protein by cosuppression did lead to elevated levels during ripening. Levels for ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ACC oxidase mRNA were increased approximately 7-fold in fruit of plants with reduced E8 protein. Levels of ACC synthase 2 mRNA were increased 2.5-fold, and ACC synthase 4 mRNA was not affected. Reduction of E8 protein in anthers did not affect the accumulation of ACC or of mRNAs encoding enzymes involved in ethylene biosynthesis. Our results suggest that the product of the E8 reaction participates in feedback regulation of ethylene biosynthesis during fruit ripening.  相似文献   

11.
12.
13.
14.
Ethylene promotes fruit ripening, including softening. The fruit of melting-flesh peach (Prunus persica (L). Batsch) cultivar 'Akatsuki' produces increasing levels of ethylene, and the flesh firmness softens rapidly during the ripening stage. On the other hand, the fruit of stony hard peach cultivars 'Yumyeong', 'Odoroki', and 'Manami' does not soften and produces little ethylene during fruit ripening and storage. To clarify the mechanism of suppression of ethylene production in stony hard peaches, the expression patterns of four ethylene biosynthesis enzymes were examined: ACC synthases (Pp-ACS1, Pp-ACS2, and Pp-ACS3) and ACC oxidase (Pp-ACO1). In the melting-flesh cultivar 'Akatsuki', Pp-ACS1 mRNA was dramatically induced after harvesting, and a large amount of ethylene was produced. On the other hand, in stony hard peaches, Pp-ACS1 mRNA was not induced during the ripening stage, and ethylene production was inhibited. Since Pp-ACS1 mRNA was induced normally in senescing flowers, wounded leaves, and wounded immature fruit of 'Yumyeong', Pp-ACS1 was suppressed only at the ripening stage, and was not a defect in Pp-ACS1. These results indicate that the suppression of fruit softening in stony hard peach cultivars was caused by a low level of ethylene production, which depends on the suppressed expression of Pp-ACS1.  相似文献   

15.

Purpose of work  

Melons have short shelf-lives due to fruit ripening caused by ethylene production. The 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene is essential for ethylene biosynthesis. As fruit ripening in other fruit crops can be deterred by down-regulation of ACC oxidase expression, we have carried out similar work to improve fruit quality and shelf-life of the melon Cucumis melo.  相似文献   

16.
17.
18.
Temporal and spatial expression patterns of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS1 and ACS2) and ACC oxidase (ACO), ACC concentration, and ethylene production in leaves and fruit of 'Valencia' orange (Citrus sinensis [L.] Osbeck) were examined in relation to differential abscission after treatment with 2-chloroethylphosphonic acid (ethephon) alone or in combination with guanfacine or clonidine, two G-protein-coupled alpha(2A)-adrenoreceptor selective agonists. Guanfacine and clonidine markedly reduced ethephon-enhanced leaf abscission, but had little effect on ethephon-enhanced fruit loosening. Ethephon-enhanced fruit and leaf ethylene production, and ACC concentration in fruit abscission zones, fruit peel, leaf abscission zones, and leaf blades were decreased by guanfacine. Guanfacine reduced ethephon-enhanced expression of ACS1 and ACO genes in leaf abscission zones and blades, but to a lesser extent in fruit abscission zones. The expression pattern of the ACS2 gene, however, was not associated with abscission. The results demonstrate that differential expression of ACS1 and ACO genes is associated with reduction of ethephon-enhanced leaf abscission by guanfacine, and suggest a link between G-protein-related signalling and abscission.  相似文献   

19.
The shelf life of Japanese pear fruit is determined by its level of ethylene production. Relatively high levels of ethylene reduce storage potential and fruit quality. We have identified RFLP markers tightly linked to the locus that determines the rate of ethylene evolution in ripening fruit of the Japanese pear. The study was carried out using sequences of two types of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase genes (PPACS1 and pPPACS2) and a ACC oxidase gene (PPAOX1) as probes on 35 Japanese pear cultivars expressing different levels of ethylene (0.0∼300 μl/kg fresh weight/h) in ripening fruit. When total DNA was digested with HindIII and probed with pPPACS1, we identified a band of 2.8 kb which was specific to cultivars having very high ethylene levels (≧10 μ1/kg f.w./h) during fruit ripening. The probe pPPACS2 identified a band of 0.8 kb specific to cultivars with moderate ethylene levels (0.5 μl/kg f.w./h–10 μl/kg f.w./h) during fruit ripening. The cultivars that produce high levels of ethylene possess at least one additional copy of pPPACS1 and those producing moderate levels of ethylene have at least one additional copy of pPPACS2. These results suggest that RFLP analysis with different ACC synthase genes could be useful for predicting the maximum ethylene level during fruit ripening in Japanese pear. Received: 1 July 1998 / Accepted: 6 October 1998  相似文献   

20.
The Synthesis of Ethylene in Melon Fruit during the Early Stage of Ripening   总被引:6,自引:0,他引:6  
The levels of mRNA and polypeptide for a 1-aminocyclopropane-1-carboxylate(ACC) oxidase were studied to identify the tissues in whichthe synthesis of ethylene first occurs during the initial stageof ripening. RNA and immunoblot analysis showed that the levelsof the mRNA and polypeptide for ACC oxidase were very low inunripe fruit. They first became detectable in the placentaltissue at the pre-climacteric stage, and then their levels increasedin the mesocarp tissue during the climacteric increase in theproduction of ethylene. Two mRNAs for ACC synthase (transcribedfrom ME-ACS1 and ME-ACS2) were detected in the placental tissueand seeds at the pre-climacteric stage, but only the level ofME-ACS1 mRNA, which has been characterized as the mRNA for awound-inducible ACC synthase, increased in mesocarp, placentaltissues and seeds during ripening. The level of ME-ACS2 mRNAthat was isolated from etiolated seedlings of melon, did notchange markedly during ripening. These results suggest thatthe central region of melon fruit (placental tissue and seeds)plays a major role in the production of ethylene during theearly stage of ripening. 3These three authors made equal contribution to this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号