首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report, we demonstrate a semi-integrated electrical biosensor for the detection of rare circulating tumor cells (CTCs) in blood. The sample was first enriched through a combination of immunomagnetic isolation and size filtration. The integration of both methods provided a high enrichment performance with a recovery rate above 70%, even for very low numbers of cancer cells present in the original sample (10 spiked MCF7 cells in 0.5 mL of blood). In the same system, the sample was then transferred to a microchip for further magnetic concentration, followed by immunochemical trapping and electronic detection by impedance spectroscopy. Three levels of spiked CTC number (30±2, 124±29, 273±23) in 10 μL of filtered blood sample were distinguished by monitoring the impedance change of the microelectrode array (MEA). The integration of different functions in a single system provided a methodology to process milliliter-sized blood samples at the macroscale and interface with the microdimensions of a highly sensitive electronic detector. The results showed that the whole system was able to detect different levels of spiked cancer cells without the use of time- and cost-intensive fluorescence labeling and image analysis. This has the potential to provide clinicians with a standalone system to monitor changes in CTC numbers throughout therapy conveniently and frequently for efficient cancer treatments.  相似文献   

2.
BACKGROUND: The prescence of circulating tumor cells (CTCs) in the peripheral blood of cancer patients and their frequency has been correlated with disease status. METHODS: In this study, CTCs were characterized by flow cytometry and fluorescence microscopy after immunomagnetic enrichment from 7.5-ml blood samples collected from patients with prostate cancer in evacuated blood-draw tubes that contained an anticoagulant and a preservative. Events were classified as tumor cell candidates if they expressed cytokeratin, lacked CD45, and stained with the nucleic acid dye 4,6-diamidino-2-phenylindole. RESULTS: In the blood of prostate cancer patients, only few of these events were intact cells. Other CTC events appeared as damaged cells or cell fragments by microscopy. By flow cytometry, these events stained variably with 4,6-diamidino-2-phenylindole and frequently expressed the apoptosis-induced, caspase-cleaved cytokeratin 18. Similar patterns of cell disintegration were observed when cells of the prostate line LNCaP were exposed to paclitaxel before spiking the cells into normal blood samples. CONCLUSIONS: The different observed stages of tumor cell degradation or apoptosis varied greatly between patients and were not found in blood of normal donors. Enumeration of CTCs and identification of CTCs undergoing apoptosis may provide relevant information to evaluate the response to therapy in cancer patients.  相似文献   

3.

Background

Contemporary cancer diagnostics are becoming increasing reliant upon sophisticated new molecular methods for analyzing genetic information. Limiting the scope of these new technologies is the lack of adequate solid tumor tissue samples. Patients may present with tumors that are not accessible to biopsy or adequate for longitudinal monitoring. One attractive alternate source is cancer cells in the peripheral blood. These rare circulating tumor cells (CTC) require enrichment and isolation before molecular analysis can be performed. Current CTC platforms lack either the throughput or reliability to use in a clinical setting or they provide CTC samples at purities that restrict molecular access by limiting the molecular tools available.

Methodology/Principal Findings

Recent advances in magetophoresis and microfluidics have been employed to produce an automated platform called LiquidBiopsy®. This platform uses high throughput sheath flow microfluidics for the positive selection of CTC populations. Furthermore the platform quantitatively isolates cells useful for molecular methods such as detection of mutations. CTC recovery was characterized and validated with an accuracy (<20% error) and a precision (CV<25%) down to at least 9 CTC/ml. Using anti-EpCAM antibodies as the capture agent, the platform recovers 78% of MCF7 cells within the linear range. Non specific recovery of background cells is independent of target cell density and averages 55 cells/mL. 10% purity can be achieved with as low as 6 CTCs/mL and better than 1% purity can be achieved with 1 CTC/mL.

Conclusions/Significance

The LiquidBiopsy platform is an automated validated platform that provides high throughput molecular access to the CTC population. It can be validated and integrated into the lab flow enabling CTC enumeration as well as recovery of consistently high purity samples for molecular analysis such as quantitative PCR and Next Generation Sequencing. This tool opens the way for clinically relevant genetic profiling of CTCs.  相似文献   

4.
Circulating tumor cells (CTCs) might not only serve as prognostic marker but could also be useful for monitoring treatment efficacy. A multicolor flow cytometry protocol for their detection and molecular characterization in peripheral blood was developed which consisted of erythrocyte lysis followed by staining of cells with fluorochrome-labeled antibodies against CD45 and the epithelial markers EpCam and cytokeratin 7/8. For reducing the number of events acquired by flow cytometry, an electronic threshold for the fluorescent signals from the epithelial markers was applied. After establishment of the protocol by using spiking experiments, its suitability to determine the absolute number of CTCs as well as their expression of epidermal growth factor receptor (EGFR) and its phosphorylated form (phospho-EGFR) in blood samples from patients with squamous cell carcinoma of the head and neck (SCCHN) was validated. Spiking experiments demonstrated an excellent recovery (mean 85%) and a linear performance (R(2) = 0.98) of the protocol. Sensitivity and specificity were comparable to our former protocol using immunomagnetic CTC pre-enrichment. The analysis of 33 SCCHN patient samples revealed the presence of CTCs in 33.3% of cases with a mean ± SD of 1.5 ± 0.5 CTCs per 3.75 ml blood. EGFR was expressed in 100% and phospho-EGFR in 36.4% of the CTC+ cases. We have established a simple and sensitive multicolor flow cytometry protocol for detection of CTCs in patients with epithelial cancers including SCCHN which will allow their detailed molecular characterization.  相似文献   

5.
Circulating tumor cells (CTC) are rare cells which have left the primary tumor to enter the blood stream. Although only a small CTC subgroup is capable of extravasating, the presence of CTCs is associated with an increased risk of metastasis and a shorter overall survival. Understanding the heterogeneous CTC biology will optimize treatment decisions and will thereby improve patient outcome. For this, robust workflows for detection and isolation of CTCs are urgently required. Here, we present a workflow to characterize CTCs by combining the advantages of both the CellSearch® and the CellCelector? micromanipulation system. CTCs were isolated from CellSearch® cartridges using the CellCelector? system and were deposited into PCR tubes for subsequent molecular analysis (whole genome amplification (WGA) and massive parallel multigene sequencing). By a CellCelector? screen we reidentified 97% of CellSearch® SKBR‐3 cells. Furthermore, we isolated 97% of CellSearch®‐proven patient CTCs using the CellCelector? system. Therein, we found an almost perfect correlation of R= 0.98 (Spearman's rho correlation, n = 20, p < 0.00001) between the CellSearch® CTC count (n = 271) and the CellCelector? detected CTCs (n = 252). Isolated CTCs were analyzed by WGA and massive parallel multigene sequencing. In total, single nucleotide polymorphisms (SNPs) could be detected in 50 genes in seven CTCs, 12 MCF‐7, and 3 T47D cells, respectively. Taken together, CTC quantification via the CellCelector? system ensures a comprehensive detection of CTCs preidentified by the CellSearch® system. Moreover, the isolation of CTCs after CellSearch® using the CellCelector? system guarantees for CTC enrichment without any contaminants enabling subsequent high throughput genomic analyses on single cell level. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:125–132, 2017  相似文献   

6.
孙帅  邓宇亮 《遗传》2015,37(12):1251-1257
循环肿瘤细胞(Circulating tumor cells,CTCs)是从肿瘤原发病灶脱落并侵入外周血循环的肿瘤细胞。由于CTCs存在较大的异质性,其与癌症发展转移密切相关,但目前尚缺乏有效的CTCs单细胞异质性检测方法。鉴于此,本文发展了在单细胞层面对CTCs进行基因突变的检测方法并用于单个肺癌CTC的EGFR(Epidermal growth factor receptor)基因突变检测。首先用集成式微流控系统完成血液中稀有CTCs的捕获,接着将CTCs释放入含有多个微孔的微阵列芯片中,得到含有单个CTC的微孔,通过显微操作将单个CTC转入PCR管内完成单细胞基因组的放大,并进行单细胞的EGFR基因突变检测。以非小细胞肺癌细胞系A549、NCI-H1650和NCI-H1975为样本,通过芯片与毛细管修饰、引物扩增条件(复性温度、循环次数)的优化,结果显示在复性温度59℃、30个循环次数的条件下,引物扩增效果最优。利用该方法成功地对非小细胞肺癌(Non-small cell lung cancer, NSCLC)患者的血液样本进行了测试。从患者2 mL血液中获取5个CTCs,分别对其EGFR基因的第18、19、20、21外显子进行测序,发现该患者CTCs均为EGFR野生型。研究结果证明此检测方法可以灵敏地用于单个CTC基因突变的检测,在临床研究上具有重要的指导意义。  相似文献   

7.
The early detection and eradication of circulating tumor cells (CTCs) play an important role in cancer metastasis management. This paper describes a new nanoparticle-enabled technique for integrated enrichment, detection and killing of CTCs by using magnetic nanoparticles and bismuth nanoparticles, X-ray fluorescence spectrometry, and X-ray radiation. The nanoparticles are modified with tumor targeting agents and conjugated with tumor cells through folate receptors over-expressed on cancer cells. A permanent micro-magnet is used to collect CTCs suspended inside a flowing medium that contains phosphate buffered saline (PBS) or whole blood. The characteristic X-ray emissions from collected bismuth nanoparticles, upon excitation with collimated X-rays, are used to detect CTCs. Results show that the method is capable of selectively detecting CTCs at concentrations ranging from 100-100,000cells/mL in the buffer solution, with a detection limit of ~100CTCs/mL. Moreover, the dose of primary X-rays can be enhanced to kill the localized CTCs by radiation induced DNA damage, with minimal invasiveness, thus making in vivo personalized CTC management possible.  相似文献   

8.
Epithelial to mesenchymal transition (EMT) has been hypothesized as a mechanism by which cells change phenotype during carcinogenesis, as well as tumor metastasis. Whether EMT is involved in cancer metastasis has a specific, practical impact on the field of circulating tumor cells (CTCs). Since the generally accepted definition of a CTC includes the expression of epithelial surface markers, such as EpCAM, if a cancer cell loses its epithelial surface markers (which is suggested in EMT), it will not be separated and/or identified as a CTC. We have developed, and previously reported on the use of, a purely negative enrichment technology enriching for CTCs in the blood of squamous cell carcinoma of the head and neck (SCCHN). This methodology does not depend on the expression of surface epithelial markers. Using this technology, our initial data on SCCHN patient blood indicates that the presence of CTCs correlates with worse disease-free survival. Since our enrichment is not dependent on epithelial markers, we have initiated investigation of the presence of mesenchymal markers in these CTC cells to include analysis of: vimentin, epidermal growth factor receptor, N-cadherin, and CD44. With the aid of confocal microscopy, we have demonstrated not only presumed CTCs that express and/or contain: a nucleus, cytokeratins, vimentin, and either EGFR, CD44, or N-cadherin, but also cells that contain all of the aforementioned proteins except cytokeratins, suggesting that the cells have undergone the EMT process. We suggest that our negative depletion enrichment methodology provides a more objective approach in identifying and evaluating CTCs, as opposed to positive selection approaches, as it is not subjective to a selection bias and can be tailored to accommodate a variety of cytoplasmic and surface markers which can be evaluated to identify a multitude of phenotypic patterns within CTCs from individual patients, including so-called EMT as presented here.  相似文献   

9.
Circulating tumor cells (CTCs) provide a readily accessible source of tumor material from patients with cancer. Molecular profiling of these rare cells can lead to insight on disease progression and therapeutic strategies. A critical need exists to isolate CTCs with sufficient quantity and sample integrity to adapt to conventional analytical techniques. We present a microfluidic platform (IsoFlux) that uses flow control and immunomagnetic capture to enhance CTC isolation. A novel cell retrieval mechanism ensures complete transfer of CTCs into the molecular assay. Improved sensitivity to the capture antigen was demonstrated by spike-in experiments for three cell lines of varying levels of antigen expression. We obtained spike-in recovery rates of 74%, 75%, and 85% for MDA-MB-231 (low), PC3 (middle), and SKBR3 (high) cell lines. Recovery using matched enumeration protocols and matched samples (PC3) yielded 90% and 40% recovery for the IsoFlux and CellSearch systems, respectively. In matched prostate cancer samples (N = 22), patients presenting more than four CTCs per blood draw were 95% and 36% using IsoFlux and CellSearch, respectively. An assay for detecting KRAS mutations was described along with data from patients with colorectal cancer, of which 87% presented CTCs above the assay's limit of detection (four CTCs). The CTC KRAS mutant rate was 50%, with 46% of patients displaying a CTC KRAS mutational status that differed from the previously acquired tissue biopsy data. The microfluidic system and mutation assay presented here provide a complete workflow to track oncogene mutational changes longitudinally with high success rates.  相似文献   

10.
Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB) “smart coating” to capture viable circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.  相似文献   

11.
12.
13.
Many studies have shown that the quantity and dynamics of circulating tumor cells (CTCs) in peripheral blood of patients afflicted with solid tumours have great relevance in therapeutic efficacy and prognosis. Different methods based on various strategies have been developed to isolate and identify CTCs, but their efficacy needs to be improved because of the rarity and complexity of CTCs. This study was designed to examine the possibility of using a SELEX aptamer (BC-15) as a probe to identify rare CTCs out of background nucleated cells. Aptamer BC-15 was selected from a random oligonucleotide library screened against human breast cancer tissue. Fluorescence staining showed that BC-15 had a high affinity for nuclei of human cancer cell lines of various origins as well as CTCs isolated from pancreatic cancer patients, whereas its binding capacity for non-tumor breast epithelial cells and leukocytes was almost undetectable. BC-15+/CD45- cells in cancer patient blood were also found to be cytokeratins 18-positive and aneuploid by immunofluorescence staining and fluorescent in situ hybridization, respectively. Finally, the aptamer method was compared with the well-established anti-cytokeratin method using 15 pancreatic cancer patient blood samples, and enumeration indicated no difference between these two methods. Our study establishes a novel way to identify CTCs by using a synthetic aptamer probe. This new approach is comparable with the anti-cytokeratin-based CTC identification method.  相似文献   

14.
15.
BACKGROUND: Circulating tumor cells (CTCs) in patients with carcinomas are extremely rare. In metastatic breast cancer, the presence of >or=5 CTCs in 7.5 ml of blood has been associated with short survival. As this threshold has clinical implications, it is important to recognize the limitations associated with the detection and enumeration of CTCs. METHODS: Statistical analyses were performed on data generated from a multi-center clinical trial that utilized the CellSearchtrade mark System to isolate and enumerate CTCs in 7.5 ml blood samples. The statistical issues associated with each step of the process, from blood collection to final image analysis and CTC enumeration, were determined and implemented into a model. RESULTS: A model describing the statistics of the different process steps that are needed for the isolation and detection of CTCs was developed. The model uses the Poisson distribution for blood collection and empirically determined distributions for the isolation and identification of CTCs. The variability between readers was identified as one of the main sources of errors responsible for the current threshold level of five CTCs. CONCLUSIONS: Elimination of the errors made in the identification of tumor cells isolated from 7.5 ml of blood could potentially reduce the CTC threshold for the identification of patients with a poor prognosis from the current value of five CTCs to one CTC per 7.5 ml of blood.  相似文献   

16.
In cancer, epithelial-mesenchymal transition (EMT) is associated with metastasis. Characterizing EMT phenotypes in circulating tumor cells (CTCs) has been challenging because epithelial marker-based methods have typically been used for the isolation and detection of CTCs from blood samples. The aim of this study was to use the optimized CanPatrol CTC enrichment technique to classify CTCs using EMT markers in different types of cancers. The first step of this technique was to isolate CTCs via a filter-based method; then, an RNA in situ hybridization (RNA-ISH) method based on the branched DNA signal amplification technology was used to classify the CTCs according to EMT markers. Our results indicated that the efficiency of tumor cell recovery with this technique was at least 80%. When compared with the non-optimized method, the new method was more sensitive and more CTCs were detected in the 5-ml blood samples. To further validate the new method, 164 blood samples from patients with liver, nasopharyngeal, breast, colon, gastric cancer, or non-small-cell lung cancer (NSCLC) were collected for CTC isolation and characterization. CTCs were detected in 107(65%) of 164 blood samples, and three CTC subpopulations were identified using EMT markers, including epithelial CTCs, biophenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. Compared with the earlier stages of cancer, mesenchymal CTCs were more commonly found in patients in the metastatic stages of the disease in different types of cancers. Circulating tumor microemboli (CTM) with a mesenchymal phenotype were also detected in the metastatic stages of cancer. Classifying CTCs by EMT markers helps to identify the more aggressive CTC subpopulation and provides useful evidence for determining an appropriate clinical approach. This method is suitable for a broad range of carcinomas.  相似文献   

17.
Circulating tumor cells (CTCs) are important targets for treatment and critical surrogate markers when evaluating cancer prognosis and therapeutic response. A sensitive methodology for detecting CTCs in gastric cancer (GC) patients is needed. In this study we demonstrate a device for enrichment and cultivation of CTCs. In total, 22 patients with GC, all candidates for surgery, were enrolled in the study. Peripheral blood samples were collected before surgery, and patients were re-evaluated within operation and divided into two groups: resectable and non-resectable GC. A new size-based separation test for enrichment and cultivation of CTCs was used (MetaCell®). In addition to cytomorphological analysis, gene expression of tumor associated genes (Cytokeratin-18, Cytokeratin-19, Cytokeratin-20, Cytokeratin-7, EPCAM, MUC1, HER2, EGFR) and of leukocyte markers (e.g. CD45, CD68) was tested in enriched CTC fractions. CTCs were detected in 59 % of the patients studied (n = 13/22). CTCs were detected in seven patients of the resection group (7/10, 70 %) and six of the non-resectable group (6/12, 50 %). Enrichment of the viable CTCs allowed subsequent successful cultivation in vitro. The cytomorphological characterization of the CTCs was a prerequisite of random gene expression testing in CTC-positive samples. In CTC-positive samples gene expression of cytokeratin 18 and 19 was elevated in comparison to the whole blood gene expression analysis. CTCs were found to be present in both resectable and non-resectable gastric cancer patients. The size-based separation platform for CTCs may be used for in vitro cultivation, as well as in subsequent molecular analysis if desired. The sensitivity of CTC-detection could be enhanced by the combination of cytomorphological and molecular analysis.  相似文献   

18.
Circulating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far–including the gold standard CellSearch—rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing epithelial-to-mesenchymal transition (EMT). Here we present an enrichment strategy combining different antibodies specific for surface proteins and extracellular matrix (ECM) components to capture an EpCAMlow/neg cell line and EpCAMneg CTCs from blood samples of breast cancer patients depleted for EpCAM-positive cells. The expression of respective proteins (Trop2, CD49f, c-Met, CK8, CD44, ADAM8, CD146, TEM8, CD47) was verified by immunofluorescence on EpCAMpos (e.g. MCF7, SKBR3) and EpCAMlow/neg (MDA-MB-231) breast cancer cell lines. To test antibodies and ECM proteins (e.g. hyaluronic acid (HA), collagen I, laminin) for capturing EpCAMneg cells, the capture molecules were first spotted in a single- and multi-array format onto aldehyde-coated glass slides. Tumor cell adhesion of EpCAMpos/neg cell lines was then determined and visualized by Coomassie/MitoTracker staining. In consequence, marginal binding of EpCAMlow/neg MDA-MB-231 cells to EpCAM-antibodies could be observed. However, efficient adhesion/capturing of EpCAMlow/neg cells could be achieved via HA and immobilized antibodies against CD49f and Trop2. Optimal capture conditions were then applied to immunomagnetic beads to detect EpCAMneg CTCs from clinical samples. Captured CTCs were verified/quantified by immunofluorescence staining for anti-pan-Cytokeratin (CK)-FITC/anti-CD45 AF647/DAPI. In total, in 20 out of 29 EpCAM-depleted fractions (69%) from 25 metastatic breast cancer patients additional EpCAMneg CTCs could be identified [range of 1–24 CTCs per sample] applying Trop2, CD49f, c-Met, CK8 and/or HA magnetic enrichment. EpCAMneg dual-positive (CKpos/CD45pos) cells could be traced in 28 out of 29 samples [range 1–480]. By single-cell array-based comparative genomic hybridization we were able to demonstrate the malignant nature of one EpCAMneg subpopulation. In conclusion, we established a novel enhanced CTC enrichment strategy to capture EpCAMneg CTCs from clinical blood samples by targeting various cell surface antigens with antibody mixtures and ECM components.  相似文献   

19.
Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier “liquid biopsy” than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33) of cytokeratin (CK) positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively). The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02). Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04) in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively). We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker expression, indicating epithelial-to-mesenchymal transition. CK-positive/Vimentin-positive/CD45-negative, and CK-negative/Vimentin-positive/CD45-negative cells were also observed in four of five prostate cancer patients but rarely in three healthy controls, indicating that Parsortix harvests CTCs with both epithelial and mesenchymal features. We also demonstrated using PC3 and DU145 spiking experiment that Parsortix harvested cells were viable for cell culture.  相似文献   

20.

Background

Quantification of circulating tumor cells (CTC) is valuable for evaluation of non-small cell lung cancer (NSCLC). The sensitivity of current methods constrains their use to detect rare CTCs in early stage. Here we evaluate a novel method, ligand-targeted polymerase chain reaction (LT-PCR), that can detect rare CTCs in NSCLC patients.

Methods

CTCs were enriched by immunomagnetic depletion of leukocytes and then labeled by a conjugate of a tumor-specific ligand and an oligonucleotide. After washing off free conjugates, the bound conjugates were stripped from CTCs and then analyzed by qPCR. To evaluate the clinical utility, blood samples were obtained from 72 NSCLC patients (33 initially diagnosed and 39 on chemotherapy), 20 benign patients, and 24 healthy donors.

Results

Experiments with healthy blood spiked with tumor cells indicated the LT-PCR allows specific detection of CTC. The clinical study showed that the initially diagnosed patients have an average of 20.8 CTC units with metastatic diseases, 11.8 CTC units with localized diseases, and 6.0 CTC units with benign diseases. With the threshold of 8.5 CTC units, the assay can detect 80% of stage I/II, 67% of stage III, and 93% of stage IV cancer. With the benign patients and healthy donors as control group, the method can detect cancer with a sensitivity of 81.8% and a specificity of 93.2%.

Conclusion

The LT-PCR would allow quantification of CTC in NSCLC patients at a more sensitive level, providing a potential tool for stratifying malignant lung diseases, especially at early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号