首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present research was conducted in district Jhang, Pakistan, to evaluate the concentration of metals/metalloids in soil and pumpkin (Cucurbita maxima) irrigated with domestic wastewater. Data revealed that the levels of metals and metalloids in soil samples from two different sites were below the safe limits except Cd, whereas, in the vegetable, the concentrations of As, Se, Ni, Mo, Pb, Mn, and Cu were above the safe limits. The levels of 12 metals and metalloids in the soil were ranged between 0.14 to 22.76 mg/kg at site-I and 0.16 to 22.13 mg/kg at site-II. The levels of these metals in the vegetable were found 0.35 to 61.13 mg/kg at site-I and 0.31 to 53.63 mg/kg at site-II. The transfer factor at both sites was highest for As and Co. The pollution load index recorded for Se, Cu, Cd, Mo, Pb, and Co was greater than 1. The daily intake of As, Mn, and Mo was above the oral reference dose, which reflects that the intake of pumpkin is not safe for the inhabitants of the selected sites. The control measures should be taken to phytoextract heavy metals and metalloids from polluted sites so as to reduce the health risks.  相似文献   

2.
The present investigation was carried out to evaluate the levels of metals and metalloids in okra (Abelmoschus esculentus) irrigated with city wastewater. Soil and vegetable samples from two different sites irrigated with wastewater were wet-digested and analyzed. Arsenic (As) was found higher at both sites and Cr was many-fold lower at both sampling sites. Among all heavy metals, Mn and Zn were abundant. Highest value of coefficient factor was found for Cr and the lowest for Cd. The high transfer value was recorded for Cu at site-I and for Ni at site-II. Copper and Se showed negative and significant correlations between soil and vegetable, whereas Mn, Zn, As, Cd, Cr, and Ni showed positive but non-significant correlations. Pollution load index in this vegetable was found to be higher for Cd and lower for Cu. Health risk index at site-I was in the order of As > Mn > Mo > Pb > Cd > Ni > Zn > Se > Fe > Co > Cr > Cu, whereas the same order was observed at site-II of the sampling locations. Thus, the health risks of metals through ingestion of vegetables were of great concern in the study area.  相似文献   

3.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

4.
Concentration of five heavy metals including lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), and zinc (Zn) in wheat collected from silages of Golestan Province, Iran, was determined using atomic absorption spectroscopy. Dry ashing method was applied for precise determination of the five heavy metal contents. The concentrations of heavy metals were recorded as the following: Pb (0.013–0.14), Cd (0.008–0.031) by graphite furnace method and Cu (0.48–6.2), Fe (58.50–406.9), and Zn (3.41–32.75) by flame method, all in mg.kg?1. The mean concentration of all the aforementioned heavy metals was (0.057 ± 0.003), (0.016 ± 0.005), (2.7 ± 0.17), (111.2 ± 21), and (5.7 ± 0.22) mg.kg?1, respectively. The level of heavy metals decreased in the order of Fe>Zn>Cu>Pb > Cd. Highest amount was related to Fe and the lowest amount to Cd. Concentrations of heavy metals in all the wheat samples were below the permissible limits set by the Food and Agriculture Organization/World Health Organization and Iranian National Standard Organization and did not pose any threat to the health of consumers.  相似文献   

5.
Due to rapid industrialization and urbanization, human activities like industrial and agricultural production, transportation, aggravate heavy metal pollution in soil and continue to endanger vegetables and human health. In this study, three contaminated areas affected by heavy metal pollution in Guangdong Province were investigated in terms of Cu, Zn, Pb, and Cd concentrations in soil and vegetables. Further analyses of the contamination status and potential risks to the health of residents consuming these vegetables were conducted. Results showed the following average heavy metal concentrations in vegetables and soil: Shaoguan > Guangzhou > Dongguan, indicating that mining has caused massive soil-heavy metal pollution. The heavy metal concentrations and Bioconcentration factors (BCFs) showed the following trend: leaf-vegetables > fruit-vegetables > root-vegetables, and those of vegetable type were as follows: Cd > Zn > Cu > Pb. The Nemero pollution index (PI) of all research region soils and hazard index (HI) exceeded 1. Hence, more attention should be paid to the potential for adverse health effects caused by the consumption of vegetables produced in these sites . Thus, effective measures are encouraged, with a focus on children due to their vulnerability to these heavy metals.  相似文献   

6.
This study aimed to assess the drinking water quality and human potential health risk in Peshawar, which is the most populous district of Khyber Pakhtunkhwa Province, Pakistan. Water was randomly collected throughout Peshawar District (urban = 45 samples and rural = 29 samples). These samples were analyzed for heavy metal (As, Cd, Co, Cu, Cr, Hg, Ni, Pb, and Zn) concentrations using the atomic absorption spectrometer (Perkin Elmer, AAS-PEA-700). Heavy metal concentrations in drinking water revealed the highest pollution index (PI) values—17.80, 11.92, 7.50, and 5.70 for the Pb, Cr, Cd, and Ni, respectively. The contaminations of Cd and Pb were significantly higher (p < .05) than their maximum allowable limits set by the World Health Organization. Heavy metal contaminations in drinking water were evaluated for health risk assessment: the chronic risk or hazard quotient (HQ) and cancer risk. Results revealed that HQ values were >1 for the Cd and Pb, suggesting that the exposed human beings could be at chronic risk. Therefore, serious measures such as drinking water treatments and contamination controlling policies are needed to avoid the hazardous effects of toxic heavy metals.  相似文献   

7.
To investigate heavy metal accumulation in soils and evaluate health risk through maize consumption, a total of 196 soils and 55 maize samples were collected from Yushu, China, one of the most important maize production bases. The mean contents of Cd, Cr, Cu, Zn and Pb were 0.119, 56.51, 19.21, 70.58, and 34.42 mg kg?1 for soils and were 0.014, 0.68, 1.33, 17.15 and 0.02 mg kg?1 for maize, respectively. The contents of Cr, Cu, Zn and Pb in all soil and maize samples did not exceed safety thresholds, but the percentages of Cd content above guideline values of Chinese Environmental Quality Standards for Soil and maximum permissible limits for maize were 6.6% and 1.8%, respectively. The spatial distribution and correlation analysis suggested that Cr and Cu in soil were of lithogenic origin, while Zn and Pb were associated with coal combustion exhausts and chemical fertilizer application. The main source of Cd may be phosphate fertilizer application. The average target hazard quotients were all less than 1 and the average hazard index for adults was 0.065, indicating that there was not a potential health risk through maize.  相似文献   

8.
In this study, the concentrations of heavy metal (Cd, Pb, Fe, and Ni) in contaminated soils adjacent to two steel mill companies and in three crops (i.e., wheat, rice, and onion) grown in these regions were compared with a non-industrial site in Isfahan province, central Iran. The results were manifold. The heavy metal concentrations of both the soil and crops within the two industrial regions turned out to be more significant than the nonindustrial counterpart. In addition, the soils surrounding the companies were demonstrated to be contaminated by Cd, Pb, and Ni according to the limits provided by the international standards (i.e., USEPA and European Union standards). As for the crops from the investigated contaminated sites, the mean concentrations of Cd, Ni, and Pb exceeded the maximum permissible levels for human consumption stipulated by FAO/WHO standards. Furthermore, the values gained from the target hazard quotient were above one, meaning that the crops are contaminated. Given the results gained from a comparison made between estimated daily intake and tolerable daily intake, it can be concluded that the inhabitants of the two investigated contaminated sites are at a potentially serious health risk caused by exposure to the crops contaminated with the heavy metal.  相似文献   

9.
The aims of this article were to investigate heavy metals concentrations in urban street dust of Tianjin, to examine spatial variations of heavy metals pollution, and to assess their health risk to local populations. Urban street dust samples were collected from 144 typical crossroads in an urban area of Tianjin. Levels of heavy metals were determined by atomic absorption spectrophotometer analyzer. Given comprehensive consideration of the complexity and uncertainty of health risk assessment, trapezoidal fuzzy number was introduced to assess the health risk of heavy metals in the urban street dust of Tianjin. The results showed that the pollution of heavy metals in the urban street dust of Tianjin was serious. The relatively serious metal pollution tended to be located in the center, north, northeast, and southeast of the study area. The research indicated that heavy metals in street dust had caused non-cancer hazard to children but had not caused non-cancer or cancer hazard to adults. The direct ingestion of dust via hand-mouth contact behaviors was the major exposure pathway for health risk.  相似文献   

10.
This study was conducted to assess the pollutant uptake capability of water lettuce (Pistia stratiotes L.) in terms of bioaccumulation, enrichment, and translocation of heavy metals grown in sugar mill effluent. Results showed that the maximum fresh weight (328.48 ± 2.04 gm kg?1), total chlorophyll content (2.13 ± 2.03 mg g?1 fwt), and relative growth rate, RGR (11.89 gg?1 d?1) of P. stratiotes were observed at 75% concentration of the sugar mill effluent after 60 days of phytoremediation experiment. The bioaccumulation factor (BF) of different heavy metals was greater than 1 with 50% and 75% concentrations of sugar mill effluent and this indicated that P. stratiotes was hyperaccumulator or phytoremediator of these metals. The enrichment factor (EF < 2 for Cu, Fe, Cr, Pb, Zn, and Mn) and (EF > 2 for Cd) indicated that P. stratiotes mineral enrichment deficient and it moderately enriched the different heavy metals. Moreover, translocation factor (TF) was less than 1 which indicated the low mobility of metals in different parts (root and leaves) of P. stratiotes after phytoremediation. Therefore, P. stratiotes can be used for phytotreatment of sugar mill effluent up to 50% to 75% concentrations and considered as hyperaccumulator aquatic plant for different heavy metals and other pollutants from the contaminated effluents.  相似文献   

11.
Abstract

The present study, deals with the estimation of degrees of contamination, ecological and human health risk of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in sediments, surface water and fishes, which were collected from middle stretch of Damodar river and ponds at Asansol, which receives outfall of various coal-based industries. Metal content in the premonsoon season was higher than the postmonsoon, due to influx of rainwater. The heavy metal pollution indices (HPI) at some locations was observed up to 1.45 times than recommended value and the cadmium (Cd) was found dominating metal for high HPI value. The Cd concentration in surface water and pore water varied from 2.8 to 14.9?µg/L and 15.3–57.0?µg/L, respectively, which was up to 6 times higher than the permissible limit. Ecological risk assessment for sediments illustrates ‘moderate to considerable ecological risk’, especially because of Cd. Hazard index (HI) calculated to identify potential human health risk by dermal exposure of surface water was <0.1, indicating ‘negligible non-cancer risk’ for all age group of people. However, HI varied from 0.73 to 1.49 for adult and 1.37–2.78 by consumption of fishes indicates children have higher ‘non-cancer risk’ than adult.  相似文献   

12.
This study probes heavy metals (HMs) concentration in groundwater, soil, vegetables, chicken eggs, and buffalo milk samples collected from different land-use types (LUT) with special emphasis on human health risk via their consumption. Our results depicted that HMs (Ni, Cr, Pb, and Cd) concentration in groundwater of all LUT; Cd concentration in agricultural soil; Ni, Cr, Mn, Cd, and Pb concentration in buffalo milk; and Ni, Cd concentration in chicken eggs of all LUT surpassed the recommended permissible limits. While, on the other hand, Cr concentration in industrial and Pb concentration in agricultural LUT also exceeded permissible limits in the case of chicken egg samples. The concentration of Cr, Pb, and Cd in most of the vegetable samples of different LUT also crossed permissible limits. The accumulation factor for selected HMs followed trends for different LUT as Industrial > Agricultural > Residential, showing the transfer of risk from soil to vegetables. Our results for principle component analysis unravel that, unlike residential, industrial, and agricultural, LUT were highly affected from metals contaminations when different environmental matrices were studied. Health risk index (HRI) was chronicled >1 for Cd in groundwater of industrial and residential sites, in the eggs found in the industrial site, and for Pb in groundwater of industrial and agricultural sites due to higher daily intake of metal, while all other HMs revealed HRI < 1 in all LUT.  相似文献   

13.
Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study.  相似文献   

14.
Heavy metals in soil can affect human health through the exposure pathways of oral ingestion, dermal contact, and inhalation. In this study, to assess the health risk of heavy metals in the agricultural area of Xinglonggang, 52 soil samples were collected and tested to obtain the concentrations of As, Cd, Cr, Cu, Ni, Pb, V, and Zn in the soil. The enrichment factor indicated that the heavy metals of the agricultural soils were enriched, but the degree of enrichment was mild for all of the heavy metals. Coefficient analysis and principal component analysis indicated that V, Cr, Ni, and Pb were mainly from natural sources, As was from irrigation, Cu and Cd tended to be from chemical fertilizers and pesticides, and Zn was from mixed sources including irrigation, chemical fertilizers, and pesticides. A human-health risk assessment indicated that the residents in the study area face high risk from carcinogens and low risk from noncarcinogens; As and Cr are the major heavy metals affecting human health. This study provides a reference and a basis for formulating effective measures to prevent and control heavy metal enrichment in agricultural soils.  相似文献   

15.
Abstract

Heavy metals are toxic in nature, and their contamination in foodstuff is a matter of concern for human health. The present study was conducted to assess the concentrations of chromium, nickel, copper, arsenic, cadmium, and lead in rice and vegetables and their possible human health risks in Tangail district, Bangladesh. Metals were measured by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion system. The average values of Cr, Ni, Cu, As, Cd, and Pb in rice and vegetables were 16.26, 16.11, 13.99, 2.28, 1.86, and 7.93?mg/kg, respectively. The average metal concentration in rice and vegetable species was in the decreasing order of okra?>?chili?>?bitter gourd?>?papaya?>?brinjal?>?bean?>?bottle gourd?>?rice?>?cucumber?>?sponge gourd?>?Indian spinach. The estimated daily intake (EDI) values of all the metals except Cu were higher than the maximum tolerable daily intake (MTDI). The target hazard quotients (THQs) values of Ni, Cu, As, Cd, and Pb exceeded the threshold value of 1 through consumption of rice and vegetables, indicating significant health risks to both adult and children. The target carcinogenic risk (TR) of As and Pb through consumption of rice and vegetables was higher than the USEPA threshold level (10?4). From the health point of view, this study clearly revealed that consumption of these contaminated rice and vegetables definitely poses carcinogenic and non-carcinogenic risks.  相似文献   

16.
In Dabaoshan mine, dumping sites were the largest pollution source to the local environment. This study analyzed the activation and ecological risk of heavy metals in waste materials from five dumping sites. Results indicated that the acidification of waste materials was severe at all dumping sites, and pH decreased below 3.0 at four of the five sites. There was a drastic variation in Cu, Zn, Pb, and Cd concentrations in different sites. Site A with 12915.3 mg kg?1 Pb and 7.2 mg kg?1 Cd and site C with 1936.2 mg kg?1 Cu and 5069.0 mg kg?1 Zn were severely polluted. Higher concentrations of water-soluble Cu were probably the critical constraint for local pioneer plants. A significant positive correlation was found between the concentrations of water-soluble and HOAc-extractable elements, and the regression analysis showed that, compared with Cu, Zn and Cd, Pb was more difficult to be transformed from HOAc extractable to water soluble. Concentration of water soluble metals should be an important index, same as concentration of HOAc extractable metals, in assessing ecological risks, availability, and toxicity of heavy metals. The modified ecological risk index indicated that all dumping sites had very high potential ecological risks. It is necessary to decrease the availability of heavy metals to reduce the impact of waste materials on environment.  相似文献   

17.
西安城市路边土壤重金属来源与潜在风险   总被引:7,自引:1,他引:7  
Chen JH  Lu XW  Zhai M 《应用生态学报》2011,22(7):1810-1816
应用X-Ray荧光光谱仪对西安城市路边土壤重金属含量进行测定,运用相关分析、主成分分析和聚类分析探讨了路边土壤的重金属来源,并利用潜在生态风险指数法评价了其生态风险.结果表明:西安城市路边土壤中Co、Cr、Cu、Mn、N、iPb和Zn的平均含量均高于陕西土壤背景值.路边土壤中As、Mn和N i主要来自于自然源和交通源,Cu、Pb和Zn主要来自交通源,Co和Cr主要来源于工业源.潜在生态风险评价结果显示,西安城市路边土壤中重金属元素属于中等污染程度,具有中等潜在生态风险.  相似文献   

18.
考洲洋重金属污染水平与潜在生态危害综合评价   总被引:18,自引:2,他引:18  
在等级模型的基础上,利用化学和生态学的方法,在地理信息系统(GIS)的支持下对考洲洋养殖水域表层海水及表层沉积物的重金属污染水平及潜在生态风险进行了综合评价,同时对不同的评价方法进行了分析和比较。结果表明,枯水期整个水域表层海水的重金属污染指数均低于0.5,丰水期更是低于0.2。调查期间湾内海水重金属含量较低,重金属污染不明显。枯水期绝大部分水域表层沉积物重金属的生态风险指数值变化范围为20~70,其高值区出现于湾的西部和西北部水域。表明这些水域的表层沉积物已受到重金属的轻微影响;丰水期整个水域表层沉积物重金属的潜在生态风险指数值均低于20,重金属污染不明显。在生态学方面,枯水期大部分水域的饵料生物水平均处于2~3级水平,其密集分布区位于湾西北部、湾口和吉隆河口附近水域,达4级水平,饵料生物较为丰富。丰水期饵料生物水平的密集分布区位于湾中部和望京洲沿岸水域,饵料生物最丰富,达4~5级水平;其次为湾口,为4级水平;最低则分布于湾的西部和西北部,其饵料生物较低,为1~2级水平。由于重金属污染程度较低,因此水温、盐度和营养盐等环境因子已成为影响湾内生态系统的主要因素。对各种不同评价方法所进行的分析和比较结果表明,采用多指标综合评价方法是描述污染和预测生态效应的一种有效途径。  相似文献   

19.
The present study focused on micronutrients and nonessential toxic heavy metals quantification and their bio-concentration in soil–rice system in Haryana, India. Composite samples of rice grains and paddy fields' soil were collected, processed and analyzed for heavy metals. Nutrient and heavy metals' content of paddy fields' soil varied over a wide range, having highest Fe content followed by Cu > Cr > Pb > Ni > Zn > Co > Cd. Most of the metals viz. Fe, Zn, Cu and Co found profusely in rice grains were essential micronutrients. Bio-concentration factors (BCFs) in rice grains were in the following order: Zn (0.11) > Co (0.10) > Cu (0.08) = Cr (0.08) > Ni (0.02) > Pb (0.011) > Cd (0.009) > Fe (0.003), indicating higher accumulation of micronutrients than non-essential toxic heavy metals. Principal component analysis revealed three factors accounting for 70% of the total variance which supported correlation among electrical conductivity (EC)-Na, EC-cation exchange capacity (CEC), CEC-Na, pH-TOC, and BCFCu-BCFZn. Health risk indices anticipated that the grains are safe for consumption as non-carcinogenic hazard quotients were less than unity for all the studied heavy metals.  相似文献   

20.
Soil heavy metal contamination is a major environmental concern, and health risk associated with heavy metals is not fully explored. A combination of spatial analysis and Monte Carlo simulation was successfully used to identify the possible sources and health risk of cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), and copper (Cu) in soils collected from a rapidly developing region of China. It was found that mean concentrations of Cd (0.17 mg/kg ), As (8.74 mg/kg ), Hg (0.15 mg/kg ), Pb (27.28 mg/kg ), and Cu (33.32 mg/kg ) were greater than the soil background values. Accumulation and spatial variability of heavy metals were significantly affected by anthropogenic activities and soil properties. The risk assessment indicated that non-carcinogenic risk was not significant. However, 95% of the total cumulative carcinogenic risk of children was greater than 1E-05, implying high potential carcinogenic risk with As and Pb representing the major contributors. Ingestion of heavy metals in the soils was the main exposure pathway compared with the inhalation and the dermal exposure. Concentration of heavy metals in the soils, particulate emission factor, and dermal exposure ratio were the major parameters affecting health risk. This study highlights the importance of assessment of soil direct exposure health risk in studying heavy metal exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号