首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fungal alkaline protease of Scopulariopsis spp. was purified to homogeneity with a recovery of 32.2% and 138.1 U/mg specific activity on lectin-agarose column. The apparent molecular mass was 15 ± 1 kD by sodium dodecyl sulfate polyacryalamide gel electrophoresis (SDS-PAGE). It was a homogenous monomeric glycoprotein as shown by a single band and confirmed by native PAGE and gelatin zymography. The enzyme was active and stable over pH range 8.0–12.0 with optimum activity at pH 9.0. The maximum activity was recorded at 50°C and remained unaltered at 50°C for 24 hr. The enzyme was stimulated by Co2+ and Mn2+ at 10 mM but was unaffected by Ba2+, Mg2+, Cu2+, Na+, K+, and Fe2+. Ca2+ and Fe3+ moderately reduced the activity (~18%); however, a reduction of about 40% was seen for Zn2+ and Hg2+. The enzyme activity was completely inhibited by 5 mM phenylmethylsulfonyl fluoride (PMSF) and partially by N-bromosuccinimide (NBS) and tocylchloride methylketone (TLCK). The serine, tryptophan, and histidine may therefore be at or near the active site of the enzyme. The protease was more active against gelatin compared to casein, fibrinogen, egg albumin, and bovine serum albumin (BSA). With casein as substrate, Km and Vmax were 4.3 mg/mL and 15.9 U/mL, respectively. An activation was observed with sodium dodecyl sulfate (SDS), Tween-80, and Triton X-100 at 2% (v/v); however, H2O2 and NaClO did not affect the protease activity. Storage stability was better for all the temperatures tested (?20, 4, and 28 ± 2°C) with a retention of more than 85% of initial activity after 40 days. The protease retained more than 50% activity after 24 hr of incubation at 28, 60, and 90°C in the presence (0.7%, w/v) of commercial enzymatic and nonenzymatic detergents. The Super Wheel–enzyme solution was able to completely remove blood staining, differing from the detergent solution alone. The stability at alkaline pH and high temperatures, broad substrate specificity, stability in the presence of surfactants and oxidizing and bleaching agents, and excellent compatibility with detergents clearly suggested the use of the enzyme in detergent formulations.  相似文献   

2.
A serine alkaline protease (EC.3.4.21) was isolated, purified and characterized from culture filtrate of the thermophilic fungus Thermomyces lanuginosus Tsiklinsky. Fructose (1.5 %) and gelatin (0.5 %) proved to be the best carbon and nitrogen sources, giving a maximum enzyme yield of 9.2 U/mL. Dates waste was utilized as a sole organic source to improve enzyme productivity, and the yield was calculated to be 11.56 U/mL. This yield was expressed also as 231.2 U/g of assimilated waste. The alkaline protease produced was precipitated by iso-propanol and further purified by gel filtration through Sephadex G-100 and ion exchange column chromatography on diethyl amino ethyl (DEAE)-cellulose with a yield of 30.12 % and 13.87-fold purification. The enzyme acted optimally at pH 9 and 60 °C and had good stability at alkaline pH and high temperatures. The enzyme possessed a high degree of thermostability and retained full activity even at the end of 1 h of incubation at 60 °C. Michaelis–Menten constant (K m), maximal reaction velocity (V max) and turnover number (K cat) of the purified enzyme on gelatin as a substrate were calculated to be 4.0 mg/mL, 18.5 U/mL and 1.8 s?1, respectively. The best enzyme activators were K+, Ca2+ and Mn2, respectively, while phenylmethylsulfonyl fluoride (PMSF) was the strongest inhibitory agent, thus suggesting that the enzyme is a serine type protease. The enzyme is a glycoprotein with molecular mass of 33 kDa as determined by SDS-PAGE. It retained full activity after 15 min incubation at 60 °C in the presence of the detergent Ariel, thus indicating its suitability for application in the detergent industry.  相似文献   

3.
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme. K m, V max, and K cat of the enzyme were 4.727 × 10−2 mg/ml, 394.68 U, and 4.2175 × 10−2 s−1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65°C), with maximum activity at pH 11 and 60°C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65°C. Hg2+, Cu2+, Fe3+, Zn2+, Cd+, and Al3+ inhibited enzyme activity, while 1 mM Co2+ enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.  相似文献   

4.
The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: ${\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: \textlog10 \textEC50   ( m\textM ) = - 0.6428  \textlog  P + 5.76  ( \textR2 ? 0.88 ){\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}. This indicates that the photosynthetic activity of the microalga Pseudokirchneriella subcapitata is highly dependent on the hydrophobicity of these commonly used organic solvents.  相似文献   

5.
Bacillus sp. JER02 is a bacterial strain that can be grown in a medium containing organic solvents and produce a protease enzyme. JER02 protease was purified with a yield of 31.9% of total protein and 328.83-fold purification. K m and Vmax of this protease were established as 0.826 µM and 7.18 µmol/min, respectively. JER02 protease stability was stimulated about 80% by cyclohexane. It exhibited optimum temperature activity at 70°C. Furthermore, this enzyme was active in a wide range of pH (4-12) and showed maximum activity at pH 9.0. The nonionic detergents Tween-20 and Triton X-100 improved the protease activity by 30 and 20%, respectively. In addition, this enzyme was shown to be very stable in the presence of strong anionic surfactants and oxidizing agents, since it retained 77%, 93%, and 98% of its initial activity, after 1 hr of incubation at room temperature with sodium dodecyl sulfate (SDS), sodium perborate (1%, v/v) and H2O2 (1%, v/v), respectively. Overall, the unique properties of the Bacillus sp. JER02 protease suggested that this thermo- and detergent-stable, solvent-tolerant protease has great potential for industrial applications.  相似文献   

6.
A marine ascidian-associated bacterium, Virgibacillus halodenitrificans RSK CAS1, was optimized for protease production by response surface methodology using marine waste as substrate. The central composite design was employed, and the optimal medium constituents for maximum protease production (1461.11 U/ml) were determined to be shrimp shell powder (15.32 g/l), casein (5.37 g/l), MgSO4 (3.0 g/l) and NaCl (55.31 g/l). The protease was purified from the culture supernatant to homogeneity in a three-step procedure consisting of ammonium sulfate precipitation, ion exchange chromatography (DEAE-cellulose column) and gel-filtration chromatography (Sephadex G-75 column), resulting in a 8.7-fold-change in purified protein. This protein had a specific activity of 1,086.78 U/mg and a molecular weight of 21 kDa. It exhibited optimal activity at 50 °C, pH 9 and 25 % NaCl. The significant stability of this protein at higher levels of salt, metal ions, organic solvents and commercial detergents and at higher, temperature, as well as its application as a cleaning additive in blood stain removal, suggests its possible use the laundry detergent industry.  相似文献   

7.
Halophilic enzymes have been manifested for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation in presence of high temperature, pH, presence of organic solvents and chaotropic agents. The present study aims at understanding the stability and activity of a halophilic Bacillus sp. EMB9 protease in organic solvents. The protease was uniquely stable in polar solvents. A clear correlation was evident between the protease function and conformational transitions, validated by CD and fluorescence spectral studies. The study affirms that preservation of protein structure, possibly due to charge screening of the protein surface by Ca2+ and Na+ ions provides stability against organic solvents and averts denaturation. Salt was also found to exert a protective effect on dialyzed protease against chaotropism of solvents. Presence of 1 % (w/v) NaCl restored the activity in the dialyzed protease and prevented denaturation in methanol, toluene and n-decane. The work will have further implication on discerning protein folding in saline as well as non-aqueous environments.  相似文献   

8.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

9.
An investigation on the properties of an alkaline protease secreted by Bacillus circulans BM15 strain isolated from a mangrove sediment sample was carried out in order to characterize the enzyme and to test its potency as a detergent additive. The protease was purified to apparent homogeneity by ammonium sulphate precipitation and was a 30-kDa protease as shown by SDS-PAGE and its proteolytic activity was detected by casein zymography. It had optimum activity at pH 7, was stable at alkaline pH range (7 to 11), had optimum temperature of activity 40°C and was stable up to a temperature of 55°C after incubation for one hour. Hg2+, Zn2+, Co2+, and Cu2+completely inhibited the enzyme activity, while Ca2+, Mg2+, K+ and Fe3+ were enhancing the same. The serine protease inhibitor PMSF and metal chelator EDTA inhibited the activity of this protease while the classic metalloprotease inhibitor 1, 10 phenanthroline did not show inhibition. The enzyme was stable in SDS, Triton-X-100 and H2 O2 as well as in various commercial detergents after incubation for one hour. The extracellular production of the enzyme, the pH and temperature stability and stability in presence of oxidants, surfactants and commercial detergents suggest its possible use as a detergent additive.  相似文献   

10.
A keratin-degrading bacterium of Bacillus licheniformis BBE11-1 was isolated and its ker gene encoding keratinase with native signal peptide was cloned and expressed in Bacillus subtilis WB600 under the strong P HpaII promoter of the pMA0911 vector. In the 3-L fermenter, the recombinant keratinase was secreted with 323 units/mL when non-induced after 24 h at 37 °C. And then, keratinase was concentrated and purified by hydrophobic interaction chromatography using HiTrap Phenyl-Sepharose Fast Flow. The recombinant keratinase had an optimal temperature and the pH at 40 °C and 10.5, respectively, and was stable at 10–50 °C and pH 7–11.5. We found this enzyme can retained 80 % activity after treated 5 h with 1 M H2O2, it was activated by Mg2+, Co2+ and could degraded broad substrates such as degraded feather, bovine serum albumin, casein, gelatin, the keratinase was considered to be a serine protease. Coordinate with Savinase, the keratinase could efficient prevent shrinkage and eliminate fibres of wool, which showed its potential in textile industries and detergent industries.  相似文献   

11.
Thirty-six proteolytic bacteria were isolated from the Jakhau coast, Kutch, India, amongst which isolate P15 identified as Bacillus tequilensis (JQ904626) was found to produce an extracellular solvent-- and detergent-tolerant protease (116.69?±?0.48 U/ml) and was selected for further investigation. Deoiled Jatropha seedcake (JSC) was found to be a suitable substrate for protease production under submerged condition. Upon optimization of process parameters following one-factor-at-a-time approach, an overall 6.4-fold (860.27?±?18.48 U/ml) increase in protease production was achieved. The maximum protease yield was obtained using a medium containing 2 % (w/v) deoiled JSC as substrate (pH of 8.0) upon 36 h of fermentation at 30 °C. The optimum temperature and pH for activity of B. tequilensis P15 protease was found to be 50 °C and 8.0, respectively. The enzyme exhibited a half-life of 190 min at 50 °C, which was enhanced to 270 min in presence of 5 mM Ca2+. The enzyme exhibited significant stability in almost all the solvents tested in the range of log P ow varying from 8.8 to ?0.76. The enzyme activity was strongly inhibited by PMSF at 5 mM concentration, whereas the presence of EDTA (5 mM) and pCMB (5 mM) enhanced enzyme activity by 20.9 and 13.7 %, respectively. The enzyme was also found to be stable in the presence of surfactants, commercial detergents and bleach-oxidant (H2O2). This protease was demonstrated to be effective in removal of blood stains from fabrics, dehairing of hide, and stripping off the gelatin from used photographic films.  相似文献   

12.
An extracellular thermostable alkaline protease isolated from Bacillus laterosporus-AK1 was purified by sephadex G-200 gel filtration and DEAE cellulose ion-exchange chromatography techniques. The purified protease showed a maximum relative activity of 100% on casein substrate and appeared as a single band on SDS-PAGE with the molecular mass of 86.29 kDa. The protease was purified to 11.1-folds with a yield of 34.3%. Gelatin zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which corresponded to the band obtained with SDS-PAGE. The protease enzyme had on optimum pH of 9.0 and exhibited highest activity at 75°C. The enzyme activity was highly susceptible to the specific serine protease inhibitor PMSF, suggesting the presence of serine residues at the active sites. Enzyme activity strongly enhanced by the metal ions Ca2+ and Mg2+ and this enzyme compatible with aril detergent stability retained 75% even 1-h incubation. The purified protease remove bloodstain completely when used with Wheel detergent.  相似文献   

13.
A protease from fresh leaves of Abrus precatorius was purified using two classical chromatography techniques: ion-exchange (DEAE-Sepharose) and Gel filtration (Sephadex G-75). The purified protease showed a molecular weight of ~?28?kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH and temperature for the purified protease was 8 and 40°C, respectively. The purified protease was stable throughout a wide temperature range from 10 to 80°C and pH from 2 to 12. Protease activity was inhibited in the presence of Co2+, Ni2+, Hg2+, and Zn2+ while its activity has increased in the presence of Ca2+ and Mg2+. The protease was highly specific to casein when compared to its specificity for gelatin, bovine serum albumin, hemoglobin, and defatted flour of Ricinodendron heudelotii. Its Vmax and Km determined using casein as a substrate were 94.34?U/mL and 349.07?µg/mL respectively. Inhibition studies showed that this purified protease was inhibited by both phenylmethane sulfonyl fluoride and aprotinin which are recognized as competitive inhibitors of serine proteases.  相似文献   

14.
This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48–50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50 % of activity at 2.5 M NaCl and about 70 % of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca2+. The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10?2 s?1. These special and important characteristics make this serine protease as valuable tool for industrial applications.  相似文献   

15.
Organic mono-phase and organic–aqueous two-phase systems were applied for 17-carbonyl reduction of androst-4-en-3,17-dione to testosterone by whole cells of the microalga Nostoc muscorum (Nostocaceae). To investigate the correlation between solvent hydrophobicity and biotransformation yield in mono- and biphasic systems, a range of 16 organic solvents with log Poctanol values (logarithm of the solvent partition coefficient in the n-octanol/water system) between ? 1.1 and 8.8 were examined. Organic solvents with log Poctanol values greater than 7, such as hexadecane and tetradecane, provided the best biocompatibility with the bioconversion by algal cells. The data also indicated that the highest yields were obtained using organic–aqueous (1:1, v/v) biphasic systems. The optimum volumetric phase ratio, reaction temperature and substrate concentration were 1:1, 30°C and 0.5 mg mL?1, respectively. Under the mentioned conditions a fourfold increase in biotransformation yield (from 7.8±2.3 to 33.4±1.8%) was observed.  相似文献   

16.
Abstract

A propanol-tolerant neutral protease was purified and characterized from Bacillus sp. ZG20 in this study. This protease was purified to homogeneity with a specific activity of 26,655?U/mg. The recovery rate and purification fold of the protease were 13.7% and 31.5, respectively. The SDS-PAGE results showed that the molecular weight of the protease was about 29?kDa. The optimal temperature and pH of the protease were 45?°C and 7.0, respectively. The protease exhibited a good thermal- and pH stability, and was tolerant to 50% propanol. Mg2+, Zn2+, K+, Na+ and Tween-80 could improve its activity. The calculated Km and Vmax values of the protease towards α-casein were 12.74?mg/mL and 28.57?µg/(min mL), respectively. This study lays a good foundation for the future use of the neutral protease from Bacillus sp. ZG20.  相似文献   

17.
Abstract

Bacillus subtilis K-5, an isolate from compost, utilized a wide range of keratinous wastes viz. diverse feather types, nails, hair, scales, etc. for growth and produced a thermostable alkaline protease (keratinase) with broad proteolytic activity. Optimization of cultural and environmental variables using a Plackett–Burman design and response surface methodology resulted in enhanced keratinase production (89%). Keratinase was partially purified (15-fold) by ammonium sulfate precipitation and carboxymethyl cellulose chromatography. The optimum pH and temperature for keratinase activity were 9.0 and 60°C, however, considerable activity and stability was observed over broad pH (5–10) and temperature range (50–90°C). B. subtilis K-5 keratinase exhibited excellent stability toward detergents (cetyl trimethylammonium bromide, Tween 80, and sodium dodecyl sulfate) and organic solvents (benzene, acetonitrile, phenylmethylsulfonyl fluoride); however, metal ions like Mn2+, Cu2+, Na+, Hg2+, K+, Ca2+, and Zn2+ inhibited the activity. B. subtilis K-5 protease showed remarkable potential for diverse applications like blood stain removal, gelatin hydrolysis from waste X-ray films and dehairing of animal hide.  相似文献   

18.
An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.  相似文献   

19.
Seafood is sometimes wasted due to the growth of psychrotolerant microbes which secrete proteases and break down proteins. Stenotrophomonas maltophilia FF11, isolated from frozen Antarctic krill, grows at a wide range of temperatures and secretes more proteases at low temperatures. According to zymogram analysis, two kinds of proteases were produced from this strain. A major protease was produced largely at 15 °C, but not at 37 °C. The temperature-dependent secreted protease was purified to homogeneity. Its molecular mass was determined at 37.4 kDa and its amino acid sequence was also obtained. This protease is a member of the subtilase group according to the NCBI blast analysis. The enzyme was highly stable at high salt concentration (4 M). Interestingly, its activity increased about 1.6-fold under high salt condition. The enzyme remains active and stable in different organic solvents (50 %, v/v) such as dimethylsulfoxide, dimethyl formamide, dioxane and acetone. These properties may provide potential applications in quality control for sea foods, in protein degradation at high salt concentration, in biocatalysis and biotransformation within non-aqueous media, such as detergent and transesterification.  相似文献   

20.
A mesophilic bacterial culture, producing an extracellular alkaline lipase, was isolated from the gas-washing wastewaters generated from the Sfax phosphate plant of the Tunisian Chemical Group and identified as Staphylococcus capitis strain. The lipase, named S. capitis lipase (SCL), has been purified to homogeneity from the culture medium. The purified enzyme molecular weight was around 45 kDa. Specific activities about 3,900 and 500 U/mg were measured using tributyrin and olive oil emulsion as substrates, respectively at 37°C and pH 8.5. Interestingly, the SCL maintained more than 60% of its initial activity over a wide pH values ranging from 5 to 11 with a high stability between pH 9 and 11 after 1 hr of incubation at room temperature. The lipase activity was enhanced in the presence of 2 mM of Mg2+, Ca2+, and K+. SCL showed significant stability in the presence of detergents and organic solvents. Altogether, these features make the SCL useful for industrial applications. Besides, SCL was compatible with commercially available detergents, and its incorporation increases lipid degradation performances making it a potential candidate in detergent formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号