首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L?1 glucose/20 g L?1 xylose and 20 g L?1 glucose/20 g L?1 xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L?1) and cell mass concentration (4.42 g L?1) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L?1 glucose/20 g L?1 xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.  相似文献   

2.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

3.
The evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii FTI 20037 yeast on xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes activities was performed during fermentation in sugarcane bagasse hemicellulosic hydrolysate. The xylitol production was evaluated by using cells previously growth in 30.0 gl?1 xylose, 30.0 gl?1 glucose and in both sugars mixture (30.0 gl?1 xylose and 2.0 gl?1 glucose). The vacuum evaporated hydrolysate (80 gl?1) was detoxificated by ion exchange resin (A-860S; A500PS and C-150-Purolite®). The total phenolic compounds and acetic acid were 93.0 and 64.9%, respectively, removed by the resin hydrolysate treatment. All experiments were carried out in Erlenmeyer flasks at 200 rpm, 30°C. The maximum XR (0.618 Umg Prot ?1 ) and XDH (0.783 Umg Prot ?1 ) enzymes activities was obtained using inoculum previously growth in both sugars mixture. The highest cell concentration (10.6 gl?1) was obtained with inoculum pre-cultivated in the glucose. However, the xylitol yield and xylitol volumetric productivity were favored using the xylose as carbon source. In this case, it was observed maximum xylose (81%) and acetic acid (100%) consumption. It is very important to point out that maximum enzymatic activities were obtained when the mixture of sugars was used as carbon source of inoculum, while the highest fermentative parameters were obtained when xylose was used.  相似文献   

4.
This study assessed the efficiency of Scheffersomyces amazonensis UFMG-CM-Y493T, cultured in xylose-supplemented medium (YPX) and rice hull hydrolysate (RHH), to convert xylose to xylitol under moderate and severe oxygen limitation. The highest xylitol yields of 0.75 and 1.04 g g?1 in YPX and RHH, respectively, were obtained under severe oxygen limitation. However, volumetric productivity in RHH was ninefold decrease than that in YPX medium. The xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in the YPX cultures were strictly dependent on NADPH and NAD+ respectively, and were approximately 10% higher under severe oxygen limitation than under moderate oxygen limitation. This higher xylitol production observed under severe oxygen limitation can be attributed to the higher XR activity and shortage of the NAD+ needed by XDH. These results suggest that Sc. amazonensis UFMG-CM-Y493T is one of the greatest xylitol producers described to date and reveal its potential use in the biotechnological production of xylitol.  相似文献   

5.
Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5′ and 3′ delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L?1 h?1) over the control strain XP (81 mg L?1 h?1). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L?1 h?1 and titre of 47 g L?1 of xylitol at 12 g L?1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol?1) was significantly lower than glucose (23.7 mol mol?1). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.  相似文献   

6.
A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l?1 ethanol from 30 g l?1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g?1 and volumetric productivity of 0.31 g l?1 h?1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l?1 ethanol from 30 g l?1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g?1, respectively, compared with 66.79% w/v and 0.45 g g?1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g?1 and volumetric productivity of 0.33 g l?1 h?1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.  相似文献   

7.
This paper evaluates the fermentative potential of Kluyveromyces marxianus grown in sugarcane bagasse cellulosic and hemicellulosic hydrolysates obtained by acid hydrolysis. Ethanol was obtained from a single glucose fermentation product, whereas xylose assimilation resulted in xylitol as the main product and ethanol as a by-product derived from the metabolism of this pentose. Fermentation performed in a simulated hydrolysate medium with a glucose concentration similar to that of the hydrolysate resulted in ethanol productivity (Qp?=?0.86 g L?1 h?1) that was tenfold higher than the one observed in the cellulosic hydrolysate. However, the use of hemicellulosic hydrolysate favored xylose assimilation in comparison with simulated medium with xylose and glucose concentrations similar to those found in this hydrolysate, without toxic compounds such as acetic acid and phenols. Under this condition, xylitol yield was 53.8 % higher in relation to simulated medium. Thus, the total removal of toxic compounds from the hydrolysate is not necessary to obtain bioproducts from lignocellulosic hydrolysates.  相似文献   

8.
Burkholderia sp. F24, originally isolated from soil, was capable of growth on xylose and removed organic inhibitors present in a hemicellulosic hydrolysate and simultaneously produced poly-3-hydroxybutyrate (P3HB). Using non-detoxified hydrolysate, Burkholderia sp. F24 reached a cell dry weight (CDW) of 6.8 g L?1, containing 48 % of P3HB and exhibited a volumetric productivity (PP3HB) of 0.10 g L?1 h?1. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate copolymers (P3HB-co-3HV) were produced using xylose and levulinic acid (LA) as carbon sources. In shake flask cultures, the 3HV content in the copolymer increased from 9 to 43 mol% by adding LA from 1.0 to 5.0 g L?1. In high cell density cultivation using concentrated hemicellulosic hydrolysate F24 reached 25.04 g L?1 of CDW containing 49 % of P3HB and PP3HB of 0.28 g L?1 h?1. Based on these findings, second-generation ethanol and bioplastics from sugarcane bagasse is proposed.  相似文献   

9.
Aims: To characterize the kinetics of growth, sugar uptake and xylitol production in batch and fed‐batch cultures for a xylitol assimilation‐deficient strain of Candida tropicalis isolated via chemical mutagenesis. Methods and Results: Chemical mutagenesis using nitrosoguanidine led to the isolation of the xylitol‐assimilation deficient strain C. tropicalis SS2. Shake‐flask fermentations with this mutant showed a sixfold higher xylitol yield than the parent strain in medium containing 25 g l?1 glucose and 25 g l?1 xylose. With 20 g l?1 glycerol, replacing glucose for cell growth, and various concentrations of xylose, the studies indicated that the mutant strain resulted in xylitol yields from xylose close to theoretical. Under fully aerobic conditions, fed‐batch fermentation with repeated addition of glycerol and xylose resulted in 3·3 g l?1 h?1 xylitol volumetric productivity with the final concentration of 220 g l?1 and overall yield of 0·93 g g?1 xylitol. Conclusions: The xylitol assimilation‐deficient mutant isolated in this study showed the potential for high xylitol yield and volumetric productivity under aerobic conditions. In the evaluation of glycerol as an alternative low‐cost nonfermentable carbon source, high biomass and xylitol yields under aerobic conditions were achieved; however, the increase in initial xylose concentrations resulted in a reduction in biomass yield based on glycerol consumption. This may be a consequence of the role of an active transport system in the yeast requiring increasing energy for xylose uptake and possible xylitol secretion, with little or no energy available from xylose metabolism. Significance and Impact of the Study: The study confirms the advantage of using a xylitol assimilation‐deficient yeast under aerobic conditions for xylitol production with glycerol as a primary carbon source. It illustrates the potential of using the xylose stream in a biomass‐based bio‐refinery for the production of xylitol with further cost reductions resulting from using glycerol for yeast growth and energy production.  相似文献   

10.
Carbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO2 g dry cell weight (DCW)?1 h?1, the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO2 g DCW?1 h?1 allowed maximization of the ethanol yield over xylose (0.327 g g?1), the average productivity (2.2 g l?1 h?1) and the ethanol final titer (48.81 g l?1). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g?1) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO2 g DCW?1 h?1, whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l?1 h?1 and 54.19 g l?1 when the specific OUR was the highest.  相似文献   

11.
Realizing the importance of xylitol as a high‐valued compound that serves as a sugar substitute, a new, one step thin layer chromatographic procedure for quick, reliable, and efficient determination of xylose and xylitol from their mixture was developed. Two hundred and twenty microorganisms from the laboratory stock cultures were screened for their ability to produce xylitol from D ‐xylose. Amongst these, an indigenous yeast isolate no.139 (SM‐139) was selected and identified as Debaryomyces hansenii on the basis of morphological and biochemical characteristics and (26S) D1/D2 r DNA region sequencing. Debaryomyces hansenii produced 9.33 gL?1 of xylitol in presence of 50.0 gL?1 of xylose in 84 h at pH 5.5, 30°C, 200 rpm. In order to utilize even higher concentrations of xylose for maximum xylitol production, a xylose enrichment technique was developed. The strain of Debaryomyces hansenii was obtained through xylose enrichment technique in a statistically optimized medium containing 0.3% yeast extract, 0.2% peptone, 0.03% MgSO4.7H2O along with 1% methanol. The culture was inoculated with 6% inoculum and incubated at 30°C and 250 rpm. A yield of 0.6 gg?1 was obtained with a xylitol volumetric productivity of 0.65 g/L h?1 in the presence of 200 gL?1 of xylose although up to 300 gL?1 of xylose could be tolerated through batch fermentation. Through this technique, even higher concentrations of xylose as substrate could be potentially utilized for maximum xylitol production. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

12.
The effect of inoculum level on xylitol production byCandida guilliermondii was evaluated in a rice straw hemicellulose hydrolysate. High initial cell density did not show a positive effect in this bioconversion since increasing the initial cell density from 0.67 g L–1 to 2.41 g L–1 decreased both the rate of xylose utilization and xylitol accumulation. The maximum xylitol yield (0.71 g g–1) and volumetric productivity (0.56 g L–1 h–1) were reached with an inoculum level of 0.9 g L–1. These results show that under appropriate inoculum conditions rice straw hemicellulose hydrolysate can be converted into xylitol by the yeastC. guilliermondii with efficiency values as high as 77% of the theoretical maximum.  相似文献   

13.
In this study, a hybrid system of response surface methodology followed by genetic algorithm has been adopted to optimize the production medium for L-glutamic acid fermentation with mixed cultures of Corynebacterium glutamicum and Pseudomonas reptilovora. The optimal combination of media components for maximal production of L-glutamic acid was found to be 49.99 g L?1 of glucose, 10 g L?1 of urea, 18.06% (v/v) of salt solution, and 4.99% (v/v) of inoculum size. The experimental glutamic acid yield at optimum condition was 19.69 g L?1, which coincided well to the value predicted by the model (19.61 g L?1). Using this methodology, a nonlinear regression model was developed for the glutamic acid production. The model was validated statistically and the determination coefficient (R 2) was found to be 0.99.  相似文献   

14.

Background

Corn stover, as one important lignocellulosic material, has characteristics of low price, abundant output and easy availability. Using corn stover as carbon source in the fermentation of valuable organic chemicals contributes to reducing the negative environmental problems and the cost of production. In ethanol fermentation based on the hydrolysate of corn stover, the conversion rate of fermentable sugars is at a low level because the native S. cerevisiae does not utilize xylose. In order to increase the conversion rate of fermentable sugars deriving from corn stover, an effective and energy saving biochemical process was developed in this study and the residual xylose after ethanol fermentation was further converted to l-lactic acid.

Results

In the hybrid process based on the hydrolysate of corn stover, the ethanol concentration and productivity reached 50.50 g L?1 and 1.84 g L?1 h?1, respectively, and the yield of ethanol was 0.46 g g?1. The following fermentation of l-lactic acid provided a product titer of 21.50 g L?1 with a productivity of 2.08 g L?1 h?1, and the yield of l-lactic acid was 0.76 g g?1. By adopting a blank aeration before the inoculation of B. coagulans LA1507 and reducing the final cell density, the l-lactic acid titer and yield reached 24.25 g L?1 and 0.86 g g?1, respectively, with a productivity of 1.96 g L?1 h?1.

Conclusions

In this work, the air pumped into the fermentor was used as both the carrier gas for single-pass gas stripping of ethanol and the oxygen provider for the aerobic growth of B. coagulans LA1507. Ethanol was effectively separated from the fermentation broth, while the residual medium containing xylose was reused for l-lactic acid production. As an energy-saving and environmental-friendly process, it introduced a potential way to produce bioproducts under the concept of biorefinery, while making full use of the hydrolysate of corn stover.
  相似文献   

15.
In this study, a compressed oxygen gas supply was connected to a sealed aerated stirred tank reactor (COS-SSTR) bio-system, leading to a high-oxygen pressure bioreactor used to improve the bio-transformative performance in the production of 1,3-dihydroxyacetone (DHA) from glycerol using Gluconobacter oxydans NL71. A concentration of 301.2 ± 8.2 g L?1 DHA was obtained from glycerol after 32 h of fed-batch fermentation in the COS-SSTR system. The volumetric productivity for this process was 9.41 ± 0.23 g L?1 h?1, which is presently the highest obtained level of glycerol bioconversion into DHA. These results show that the application of this bioreactor would enable microbial production of DHA from glycerol at the industrial scale.  相似文献   

16.
Xylitol, a functional sweetener, was produced from xylose using Candida tropicalisATCC 13803. A two-substrate fermentation was designed in order to increase xylitol yield and volumetric productivity. Glucose was used initially for cell growth followed by conversion of xylose to xylitol without cell growth and by-product formation after complete depletion of glucose. High glucose concentrations increased volumetric productivity by reducing conversion time due to high cell mass, but also led to production of ethanol, which, in turn, inhibited cell growth and xylitol production. Computer simulation was undertaken to optimize an initial glucose concentration using kinetic equations describing rates of cell growth and xylose bioconversion as a function of ethanol concentration. Kinetic constants involved in the equations were estimated from the experimental results. Glucose at 32 g L−1 was estimated to be an optimum initial glucose concentration with a final xylose concentration of 86 g L−1 and a volumetric productivity of 5.15 g-xylitol L−1 h−1. The two-substrate fermentation was performed under optimum conditions to verify the computer simulation results. The experimental results were in good agreement with the predicted values of simulation with a xylitol yield of 0.81 g-xylitol g-xylose−1 and a volumetric productivity of 5.06 g-xylitol L−1 h−1. Received 16 June 1998/ Accepted in revised form 28 February 1999  相似文献   

17.
Several factors affecting erythritol production from glycerol by Yarrowia lipolytica Wratislavia K1 strain were examined in batch fermentations. Ammonium sulfate, monopotassium phosphate, and sodium chloride were identified as critical medium components that determine the ratio of polyols produced. The central composite rotatable experimental design was used to optimize medium composition for erythritol production. The concentrations of ammonium sulfate, monopotassium phosphate, and sodium chloride in the optimized medium were 2.25, 0.22, and 26.4 g L?1, respectively. The C:N ratio was found as 81:1. In the optimized medium with 100 g L?1 of glycerol the Wratislavia K1 strain produced 46.9 g L?1 of erythritol, which corresponded to a 0.47 g g?1 yield and a productivity of 0.85 g L?1 hr?1. In the fed-batch mode and medium with the total concentration of glycerol at 300 g L?1 and C:N ratio at 81:1, 132 g L?1 of erythritol was produced with 0.44 g g?1 yield and a productivity of 1.01 g L?1 hr?1.  相似文献   

18.
The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L?1 h?1 were achieved in batch fermentation with initial sugar concentration of 55 g L?1. A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 109 CFU ml?1 was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.  相似文献   

19.
Clostridium beijerinckii optinoii is a Clostridium species that produces butanol, isopropanol and small amounts of ethanol. This study compared the performances of batch and continuous immobilized cell fermentations, investigating how media flow rates and nutritional modification affected solvent yields and productivity. In 96-h batch cultures, with 80 % of the 30 g L?1 glucose consumed in synthetic media, solvent concentration was 9.45 g L?1 with 66.0 % as butanol. In a continuous fermentation using immobilized C. beijerinckii optinoii cells, also with 80 % of 30 g L?1 glucose utilization, solvent productivity increased to 1.03 g L?1 h?1. Solvent concentration reached 12.14 g L?1 with 63.0 % as butanol. Adjusting the dilution rate from 0.085 to 0.050 h?1 to allow extended residence time in column was required when glucose concentration in fresh media was increased from 30 to 50 g L?1. When acetate was used to improve the buffer capacity in media, the solvent concentration reached 12.70 on 50 g L?1 glucose. This continuous fermentation using immobilized cells showed technical feasibility for solvent production.  相似文献   

20.
Botryococcus braunii is a colonial green microalga with recognized potential to synthesize lipids and hydrocarbons for biofuel production. Besides this ability, this microalga also produces exopolysaccharides (EPS). Nevertheless, there are few reports about their biotechnological aspects and industrial applications. In this study, the effect of the nutritional conditions was examined by using two different culture media (BG11 and D medium). To our knowledge, the latter has not been reported before for culturing B. braunii. After 49 days of incubation, the final production of EPS was found to be statistically higher (P < 0.05) in the D medium (0.549?±?0.044 g L?1) than in BG11 (0.336?±?0.009 g L?1). On the contrary, the biomass production was found to be higher in BG11 (1.019?±?0.051 g L?1) than in the D medium (0.953?±?0.056 g L?1). However, this difference was not statistically significant. The difference in salinity and nitrogen concentration between both media is suggested as the main factor involved in the EPS and biomass results. FTIR spectra of B. braunii EPS from both media revealed presence of uronic acids and absence of amino and sulfate groups. Despite the similarity between both spectra, there were some different signals (at 1,921.52 and 720.60 cm?1) which may mean a difference in glycosyl composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号