首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
It is widely believed that the dominant force opposing protein folding is the entropic cost of restricting internal rotations. The energetic changes from restricting side-chain torsional motion are more complex than simply a loss of conformational entropy, however. A second force opposing protein folding arises when a side-chain in the folded state is not in its lowest-energy rotamer, giving rotameric strain. chi strain energy results from a dihedral angle being shifted from the most stable conformation of a rotamer when a protein folds. We calculated the energy of a side-chain as a function of its dihedral angles in a poly(Ala) helix. Using these energy profiles, we quantify conformational entropy, rotameric strain energy and chi strain energy for all 17 amino acid residues with side-chains in alpha-helices. We can calculate these terms for any amino acid in a helix interior in a protein, as a function of its side-chain dihedral angles, and have implemented this algorithm on a web page. The mean change in rotameric strain energy on folding is 0.42 kcal mol-1 per residue and the mean chi strain energy is 0.64 kcal mol-1 per residue. Loss of conformational entropy opposes folding by a mean of 1.1 kcal mol-1 per residue, and the mean total force opposing restricting a side-chain into a helix is 2.2 kcal mol-1. Conformational entropy estimates alone therefore greatly underestimate the forces opposing protein folding. The introduction of strain when a protein folds should not be neglected when attempting to quantify the balance of forces affecting protein stability. Consideration of rotameric strain energy may help the use of rotamer libraries in protein design and rationalise the effects of mutations where side-chain conformations change.  相似文献   

2.
The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures.  相似文献   

3.
Dwyer DS 《Proteins》2006,63(4):939-948
The electronic properties of amino acid side-chains are emerging as an important factor in the preference for secondary structure in proteins. These properties have not been fully characterized, nor has their role in the behavior of peptides been explored in any detail. The present studies sought to evaluate several possibilities: 1) that hydrophilicity can be expressed solely in electronic terms, 2) that substituent effects of side-chains extend across the peptide bond, and (3) nearest-neighbor effects in dipeptides correlate with secondary structural preferences. Quantum mechanics (QM) calculations were used to define the electronic properties of individual amino acids and dipeptides. It was found that the hydrophilicity of an amino acid side-chain can be accurately represented as a function of the electron densities of its component atoms. In addition, the nature of an amino acid in the second position of a dipeptide affects the electronic properties (Mulliken populations and electron densities) of the main-chain atoms of the first residue. Certain electronic features of the dipeptides strongly correlated with propensity for secondary structure. Specifically, Mulliken population data at the Calpha atom and N atom predicted preference for alpha-helices versus coil and strand conformations, respectively. Analysis of dipeptides arrayed in either helical or extended structures revealed lengthening of main-chain bonds in the alpha-helical conformations. A thorough characterization of the electronic properties of amino acids and short peptide segments may provide a better understanding of the forces that determine secondary structure in proteins.  相似文献   

4.
Straight-chain non-polar amino acids are good helix-formers in water   总被引:6,自引:0,他引:6  
For comparison with earlier data on naturally occurring non-polar amino acids (Ala, Leu, Phe, Val, Ile), the comparative helix-forming tendencies have been measured for non-polar amino acid residues that have unbranched side-chains, with an ethyl, propyl or butyl group, and also for methionine. The substitutions are made in a 17-residue alanine-based peptide. The results show that straight-chain non-polar amino acids have high helix-forming tendencies compared to beta-branched non-polar amino acids. Restriction of side-chain conformations in the helix, with a corresponding reduction in conformational entropy, is the likely explanation. There is a small increase in helix-forming tendency as the side-chain increases in length from ethyl to butyl, which suggests that a helix-stabilizing hydrophobic interaction is being detected.  相似文献   

5.
Creamer TP 《Proteins》2000,40(3):443-450
The largest force disfavoring the folding of a protein is the loss of conformational entropy. A large contribution to this entropy loss is due to the side-chains, which are restricted, although not immobilized, in the folded protein. In order to accurately estimate the loss of side-chain conformational entropy that occurs upon folding it is necessary to have accurate estimates of the amount of entropy possessed by side-chains in the ensemble of unfolded states. A new scale of side-chain conformational entropies is presented here. This scale was derived from Monte Carlo computer simulations of small peptide models. It is demonstrated that the entropies are independent of host peptide length. This new scale has the advantage over previous scales of being more precise with low standard errors. Better estimates are obtained for long (e.g., Arg and Lys) and rare (e.g., Trp and Met) side-chains. Excellent agreement with previous side-chain entropy scales is achieved, indicating that further advancements in accuracy are likely to be small at best. Strikingly, longer side-chains are found to possess a smaller fraction of the theoretical maximum entropy available than short side-chains. This indicates that rotations about torsions after chi(2) are significantly affected by side-chain interactions with the polypeptide backbone. This finding invalidates previous assumptions about side-chain-backbone interactions. Proteins 2000;40:443-450.  相似文献   

6.
Chellgren BW  Creamer TP 《Proteins》2006,62(2):411-420
Loss of conformational entropy is one of the primary factors opposing protein folding. Both the backbone and side-chain of each residue in a protein will have their freedom of motion restricted in the final folded structure. The type of secondary structure of which a residue is part will have a significant impact on how much side-chain entropy is lost. Side-chain conformational entropies have previously been determined for folded proteins, simple models of unfolded proteins, alpha-helices, and a dipeptide model for beta-strands, but not for polyproline II (PII) helices. In this work, we present side-chain conformational estimates for the three regular secondary structure types: alpha-helices, beta-strands, and PII helices. Entropies are estimated from Monte Carlo computer simulations. Beta-strands are modeled as two structures, parallel and antiparallel beta-strands. Our data indicate that restraining a residue to the PII helix or antiparallel beta-strand conformations results in side-chain entropies equal to or higher than those obtained by restraining residues to the parallel beta-strand conformation. Side-chains in the alpha-helix conformation have the lowest side-chain entropies. The observation that extended structures retain the most side-chain entropy suggests that such structures would be entropically favored in unfolded proteins under folding conditions. Our data indicate that the PII helix conformation would be somewhat favored over beta-strand conformations, with antiparallel beta-strand favored over parallel. Notably, our data imply that, under some circumstances, residues may gain side-chain entropy upon folding. Implications of our findings for protein folding and unfolded states are discussed.  相似文献   

7.
COSMIC analysis of the major alpha-helix of barnase during folding   总被引:2,自引:0,他引:2  
The structures of transition states and intermediates in protein folding may be analysed by protein engineering methods that remove simple interactions that stabilize the folded state. We have now extended the range and reliability of the procedure by using the COSMIC (Combination of Sequential Mutant Interaction Cycles) technique, in which a series of double-mutant cycles is constructed. In each cycle, the side-chains of two amino acid residues that interact in the folded state are mutated separately and together. Kinetic and equilibrium measurements on folding for each cycle show unambiguously whether or not two residues interact during protein folding. A series of such cycles has been constructed to leapfrog along the major alpha-helix of barnase, comprising residues 6 to 18. The helix is found to be intact from its C terminus to residue 12 but begins to unwind towards the N terminus in both the transition state for unfolding and in a folding intermediate.  相似文献   

8.
A systematic examination by 1H nuclear magnetic resonance of the population of beta-turn-containing conformers in several series of short linear peptides in water solution has demonstrated a dependence on amino acid sequence which has important implications for initiation of protein folding. The peptides consist of a number of variants of the sequence Tyr-Pro-Tyr-Asp, the trans isomer of which was previously shown to contain a reverse turn in water. Two-dimensional rotating-frame nuclear Overhauser effect spectroscopy provides unequivocal evidence that substantial populations of reverse turn conformations occur in water solutions of certain of these peptides. In the unfolded state, the peptides adopt predominantly extended chain (beta) conformations in water. It appears probable from the nuclear Overhauser effect connectivities observed that the reverse turns in the trans isomers are predominantly type II. The low temperature coefficient of the amide proton resonance of the residue at position 4 of the turn suggests the presence of an intramolecular hydrogen bond. The presence of the beta-turn conformation has been confirmed for certain peptides by circular dichroism measurements. Substitutions at positions 3 and 4 in the sequence Tyr-Pro-Tyr-Asp-Val can enhance or abolish the beta-turn population in the trans peptide isomers. The residue at position 3 of the turn is the primary determinant of its stability. A small amount of additional stabilization appears to result from an electrostatic interaction between the side-chain of residue 4 and the unblocked amino terminus. For peptides of the series Tyr-Pro-X-Asp-Val, where X represents all L-amino acid except Trp and Pro, the temperature coefficient of the Asp4 amide proton resonance provides a measure of the beta-turn population. The beta-turn populations in water solution measured in this way correlate with the beta-turn probabilities determined from protein crystal structures. This indicates that it is frequently the local amino acid sequence, rather than medium- to long-range interactions in the folded protein, that determines the beta-turn conformation in the folded state. Such sequences are excellent candidates for protein folding initiation sites. A high population of structured forms appears to be present in the cis isomer of certain of the peptides, as shown by a considerable increase in the proportion of the cis isomer and by measurement of nuclear Overhauser effects and 3JN alpha coupling constants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We applied an atomistic Brownian dynamics (BD) simulation with multiple time step method for the folding simulation of a 13-mer α-helical peptide and a 12-mer β-hairpin peptide, giving successful folding simulations. In this model, the driving energy contribution towards folding came from both electrostatic and van der Waals interactions for the α-helical peptide and from van der Waals interactions for the β-hairpin peptide. Although, many non-native structures having the same or lower energy than that of native structure were observed, the folded states formed the most populated cluster when the structures obtained by the BD simulations were subjected to the cluster analysis based on distance-based root mean square deviation of side-chains between different structures. This result indicates that we can predict the native structures from conformations sampled by BD simulation.  相似文献   

10.
Non-rotameric ("off-rotamer") conformations are commonly observed for the side-chains of protein crystal structures. This study examines whether such conformations are real or artifactual by comparing the energetics of on and off-rotamer side-chain conformations calculated with the CHARMM energy function. Energy-based predictions of side-chain orientation are carried out by rigid-geometry mapping in the presence of the fixed protein environment for 1709 non-polar side-chains in 24 proteins for which high-resolution (2.0 A or better) structures are available. For on-rotamer conformations, 97.6 % are correctly predicted; i.e. they correspond to the absolute minima of their local side-chain energy maps (generally to within 10 degrees or less). By contrast, for the observed off-rotamer side-chain conformations, 63.8 % are predicted correctly. This difference is statistically significant (P<0.001) and suggests that while most of the observed off-rotamer conformations are real, many of the erroneously predicted ones are likely to be artifacts of the X-ray refinements. Probabilities for off-rotamer conformations of the non-polar side-chains are calculated to be 5.0-6.1 % by adaptive umbrella-sampled molecular dynamics trajectories of individual amino acid residues in vacuum and in the presence of an average protein or aqueous dielectric environment. These results correspond closely to the 5.7 % off-rotamer fraction predicted by the rigid-geometry mapping studies. Since these values are about one-half of the 10.2 % off-rotamer fraction observed in the X-ray structures, they support the conclusion that many of the latter are artifacts. In both the rigid-geometry mapping and the molecular dynamics studies, the discrepancies between the predicted and observed fractions of off-rotamer conformations are largest for leucine residues (approximately 6 % versus 16.6 %). The simulations for the isolated amino acid residues indicate that the real off-rotamer frequency of 5-6 % is consistent with the internal side-chain and local side-chain-backbone energetics and does not originate from shifts due to the protein. The present results suggest that energy-based rotation maps can be used to find side-chain positional artifacts that appear in crystal structures based on refinements in the 2 A resolution range.  相似文献   

11.
The role of crystal packing in determining the observed conformations of amino acid side-chains in protein crystals is investigated by (1) analysis of a database of proteins that have been crystallized in different unit cells (space group or unit cell dimensions) and (2) theoretical predictions of side-chain conformations with the crystal environment explicitly represented. Both of these approaches indicate that the crystal environment plays an important role in determining the conformations of polar side-chains on the surfaces of proteins. Inclusion of the crystal environment permits a more sensitive measurement of the achievable accuracy of side-chain prediction programs, when validating against structures obtained by X-ray crystallography. Our side-chain prediction program uses an all-atom force field and a Generalized Born model of solvation and is thus capable of modeling simple packing effects (i.e. van der Waals interactions), electrostatic effects, and desolvation, which are all important mechanisms by which the crystal environment impacts observed side-chain conformations. Our results are also relevant to the understanding of changes in side-chain conformation that may result from ligand docking and protein-protein association, insofar as the results reveal how side-chain conformations change in response to their local environment.  相似文献   

12.
Proteins with homologous amino acid sequences have similar folds and it has been assumed that an unknown three-dimensional structure can be obtained from a known homologous structure by substituting new side-chains into the polypeptide chain backbone, followed by relatively small adjustment of the model. To examine this approach of structure prediction and, more generally, to isolate the characteristics of native proteins, we constructed two incorrectly folded protein models. Sea-worm hemerythrin and the variable domain of mouse immunoglobulin K-chain, two proteins with no sequence homology, were chosen for study; the former is composed of a bundle of four alpha-helices and the latter consists of two 4-stranded beta-sheets. Using an automatic computer procedure, hemerythrin side-chains were substituted into the immunoglobulin domain and vice versa. The structures were energy-minimized with the program CHARMM and the resulting structures compared with the correctly folded forms. It was found that the incorrect side-chains can be incorporated readily into both types of structures (alpha-helices, beta-sheets) with only small structural adjustments. After constrained energy-minimization, which led to an average atomic co-ordinate shift of no more than 0.7 to 0.9 A, the incorrectly folded models arrived at potential energy values comparable to those of the correct structures. Detailed analysis of the energy results shows that the incorrect structures have less stabilizing electrostatic, van der Waals' and hydrogen-bonding interactions. The difference is particularly pronounced when the electrostatic and van der Waals' energy terms are calculated by modified equations that include an approximate representation of solvent effects. The incorrectly folded structures also have a significantly larger solvent-accessible surface and a greater fraction of non-polar side-chain atoms exposed to solvent. Examination of their interior shows that the packing of side-chains at the secondary structure interfaces, although corresponding to sterically allowed conformations, deviates from the characteristics found in normal proteins. The analysis of incorrectly folded structures has made it clear that the absence of bad non-bonded contacts, though necessary, is not sufficient to demonstrate the validity of model-built structures and that modeling of homologous structures has to be accompanied by a thorough quantitative evaluation of the results. Further, certain features that characterize native proteins are made evident by their absence in misfolded models.  相似文献   

13.
The study of backbone and side-chain internal motions in proteins and peptides is crucial to having a better understanding of protein/peptide "structure" and to characterizing unfolded and partially folded states of proteins and peptides. To achieve this, however, requires establishing a baseline for internal motions and motional restrictions for all residues in the fully, solvent-exposed "unfolded state." GXG-based tripeptides are the simpliest peptides where residue X is fully solvent exposed in the context of an actual peptide. In this study, a series of GXG-based tripeptides has been synthesized with X being varied to include all twenty common amino acid residues. Proton-coupled and -decoupled (13)C-nmr relaxation measurements have been performed on these twenty tripeptides and various motional models (Lipari-Szabo model free approach, rotational anisotropic diffusion, rotational fluctuations within a potential well, rotational jump model) have been used to analyze relaxation data for derivation of angular variances and motional correlation times for backbone and side-chain chi(1) and chi(2) bonds and methyl group rotations. At 298 K, backbone motional correlation times range from about 50 to 85 ps, whereas side-chain motional correlation times show a much broader spread from about 18 to 80 ps. Angular variances for backbone phi,psi bond rotations range from 11 degrees to 23 degrees and those for side chains vary from 5 degrees to 24 degrees for chi(1) bond rotations and from 5 degrees to 27 degrees for chi(2) bond rotations. Even in these peptide models of the "unfolded state," side-chain angular variances can be as restricted as those for backbone and beta-branched (valine, threonine, and isoleucine) and aromatic side chains display the most restricted motions probably due to steric hinderence with backbone atoms. Comparison with motional data on residues in partially folded, beta-sheet-forming peptides indicates that side-chain motions of at least hydrophobic residues are less restricted in the partially folded state, suggesting that an increase in side-chain conformational entropy may help drive early-stage protein folding. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

14.
A new amino acid derivative with a diol side-chain, L-2-amino-4,5-dihydroxy-pentanoic acid (Adi), has been prepared from L-allylglycine by suitable protection, for use in peptide synthesis, as Fmoc-L-Adi(Trt)2. This building block enables the introduction of a side-chain aldehyde at any position in a given peptide sequence without use of specialized side-chain protection schemes. The aldehyde is revealed by mild oxidation with sodium periodate, circumventing the problematic release of reactive peptidic aldehydes in TFA solution. Peptides with aldehyde side-chains are useful for chemo-selective ligation, reacting selectively with oxyamines to yield oxime links, while all other peptide functions can be left unprotected. The utility of the new building block has been demonstrated by the synthesis of peptide dimers and a cyclo-peptide.  相似文献   

15.
How is the native structure encoded in the amino acid sequence? For the traditional backbone centric view, the dominant forces are hydrogen bonds (backbone) and phi-psi propensity. The role of hydrophobicity is non-specific. For the side-chain centric view, the dominant force of protein folding is hydrophobicity. In order to understand the balance between backbone and side-chain forces, we have studied the contributions of three components of a beta-hairpin peptide: turn, backbone hydrogen bonding and side-chain interactions, of a 16-residue fragment of protein G. The peptide folds rapidly and cooperatively to a conformation with a defined secondary structure and a packed hydrophobic cluster of aromatic side-chains. Our strategy is to observe the structural stability of the beta-hairpin under systematic perturbations of the turn region, backbone hydrogen bonds and the hydrophobic core formed by the side-chains, respectively. In our molecular dynamics simulations, the peptides are solvated. with explicit water molecules, and an all-atom force field (CFF91) is used. Starting from the original peptide (G41EWTYDDATKTFTVTE56), we carried out the following MD simulations. (1) unfolding at 350 K; (2) forcing the distance between the C(alpha) atoms of ASP47 and LYS50 to be 8 A; (3) deleting two turn residues (Ala48 and Thr49) to form a beta-sheet complex of two short peptides, GEWTYDD and KTFTVTE; (4) four hydrophobic residues (W43, Y45, F52 and T53) are replaced by a glycine residue step-by-step; and (5) most importantly, four amide hydrogen atoms (T44, D46, T53, and T55, which are crucial for backbone hydrogen bonding), are substituted by fluorine atoms. The fluorination not only makes it impossible to form attractive hydrogen bonding between the two beta-hairpin strands, but also introduces a repulsive force between the two strands due to the negative charges on the fluorine and oxygen atoms. Throughout all simulations, we observe that backbone hydrogen bonds are very sensitive to the perturbations and are easily broken. In contrast, the hydrophobic core survives most perturbations. In the decisive test of fluorination, the fluorinated peptide remains folded under our simulation conditions (5 ns, 278 K). Hydrophobic interactions keep the peptide folded, even with a repulsive force between the beta-strands. Thus, our results strongly support a side-chain centric view for protein folding.  相似文献   

16.
We designed and synthesized the peptide nucleic acid (PNA)-peptide conjugates having anthracene chromophores and investigated their interactions with calf thymus DNA, [d(AT)(10)](2), [d(GC)(10)](2), and [d(AT)(10)dA(6)](2). Considering the synthesis compatibility and expecting that a novel DNA analogue, PNA, can improve DNA binding properties of alpha-helix peptides, we attempted to attach thymine PNA oligomers at the C-terminus of a 14 amino acid alpha-helix peptide that contained a pair of artificial intercalators, anthracene, as a probe, and to examine their interactions with DNA using anthracene UV, fluorescence and circular dichroism properties. The results observed in this study showed that the designed peptide folded in an alpha-helix structure in the presence of calf thymus DNA, [d(AT)(10)](2), and [d(AT)(10)dA(6)](2) with the chromophores at the side-chain being fixed with a left-handed chiral-sense orientation. The alpha-helix and the anthracene signals were not observed for [d(GC)(10)](2). Incorporation of thymine PNA oligomers into the designed alpha-helix peptide increased the DNA binding ability to [d(AT)(10)dA(6)](2) with increasing the length of the PNA without changing the conformations of the peptide backbone and the anthracene side-chains.  相似文献   

17.
Wang H  Varady J  Ng L  Sung SS 《Proteins》1999,37(3):325-333
Molecular dynamics simulations of beta-hairpin folding have been carried out with a solvent-referenced potential at 274 K. The model peptide V4DPGV4 formed stable beta-hairpin conformations and the beta-hairpin ratio calculated by the DSSP algorithm was about 56% in the 50-ns simulation. Folding into beta-hairpin conformations is independent of the initial conformations. The simulations provided insights into the folding mechanism. The hydrogen bond often formed in a beta-turn first, and then propagated by forming more hydrogen bonds along the strands. Unfolding and refolding occurred repeatedly during the simulations. Both the hydrogen bonding and the hydrophobic interaction played important roles in forming the ordered structure. Without the hydrophobic effect, stable beta-hairpin conformations did not form in the simulations. With the same energy functions, the alanine-based peptide (AAQAA)3Y folded into helical conformations, in agreement with experiments. Folding into an alpha-helix or a beta-hairpin is amino acid sequence-dependent.  相似文献   

18.
The results of a conformational study on the C terminal hexapeptide of Somatostatin are presented. Semi-empirical energy calculations and high resolution NMR methods have been used to obtain information on the conformational properties of SRIF9-14 in [2H6]dimethylsulfoxide and 2H2O. It is concluded from the energy calculations that the peptide has an averaged conformation in which semi extended and folded structures are important. Only some of the folded conformations can explain the chemical shift differences between the amino acid residues Thr10 and Thr12 as a ring current shift by the Phe11 aromatic ring on Thr10. The nonequivalence is more pronounced in dimethyl-sulfoxide (0.23--0.15 ppm) where it decreases with increasing temperature towards the temperature independent value in 2H2O (0.03 ppm). This suggests that the folded conformations are somewhat predominant in dimethylsulfoxide solutions. In 2H2O the semi extended and folded structures are statistically equally important and the peptide is more flexible. A comparison with a study on the smaller fragments SRIF10-12 and SRIF10-13 which have similar conformational properties, demonstrates the usefulness of the fragment approach in conformational studies of peptides.  相似文献   

19.
Proteins can sample a variety of partially folded conformations during the transition between the unfolded and native states. Some proteins never significantly populate these high-energy states and fold by an apparently two-state process. However, many proteins populate detectable, partially folded forms during the folding process. The role of such intermediates is a matter of considerable debate. A single amino acid change can convert Escherichia coli ribonuclease H from a three-state folder that populates a kinetic intermediate to one that folds in an apparent two-state fashion. We have compared the folding trajectories of the three-state RNase H and the two-state RNase H, proteins with the same native-state topology but altered regional stability, using a protein engineering approach. Our data suggest that both versions of RNase H fold through a similar trajectory with similar high-energy conformations. Mutations in the core and the periphery of the protein affect similar aspects of folding for both variants, suggesting a common trajectory with folding of the core region followed by the folding of the periphery. Our results suggest that formation of specific partially folded conformations may be a general feature of protein folding that can promote, rather than hinder, efficient folding.  相似文献   

20.
Yan S  Wu G 《Proteins》2012,80(3):764-773
Misgurin is an antimicrobial peptide from the loach, while the hydrophobic-polar (HP) model is a way to study the folding conformations and native states in peptide and protein although several amino acids cannot be classified either hydrophobic or polar. Practically, the HP model requires extremely intensive computations, thus it has yet to be used widely. In this study, we use the two-dimensional HP model to analyze all possible folding conformations and native states of misgurin with conversion of natural amino acids according to the normalized amino acid hydrophobicity index as well as the shortest benchmark HP sequence. The results show that the conversion of misgurin into HP sequence with glycine as hydrophobic amino acid at pH 2 has 1212 folding conformations with the same native state of minimal energy -6; the conversion of glycine as polar amino acid at pH 2 has 13,386 folding conformations with three native states of minimal energy -5; the conversion of glycine as hydrophobic amino acid at pH 7 has 2538 folding conformations with three native states of minimal energy -5; and the conversion of glycine as polar amino acid at pH 7 has 12,852 folding conformations with three native states of minimal energy -4. Those native states can be ranked according to the normalized amino acid hydrophobicity index. The detailed discussions suggest two ways to modify misgurin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号