首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
It is essential to calculate micromotions at the bone-implant interface of an uncemented femoral total knee replacement (TKR) using a reliable computational model. In the current study, experimental measurements of micromotions were compared with predicted micromotions by Finite Element Analysis (FEA) using two bone material models: linear elastic and post-yield material behavior, while an actual range of interference fit was simulated. The primary aim was to investigate whether a plasticity model is essential in order to calculate realistic micromotions. Additionally, experimental bone damage at the interface was compared with the FEA simulated range.TKR surgical cuts were applied to five cadaveric femora and micro- and clinical CT- scans of these un-implanted specimens were made to extract geometrical and material properties, respectively. Micromotions at the interface were measured using digital image correlation. Cadaver-specific FEA models were created based on the experimental set-up. The average experimental micromotion of all specimens was 53.1 ± 42.3 µm (mean ± standard deviation (SD)), which was significantly higher than the micromotions predicted by both models, using either the plastic or elastic material model (26.5 ± 23.9 µm and 10.1 ± 10.1 µm, respectively; p-value < 0.001 for both material models). The difference between the two material models was also significant (p-value < 0.001). The predicted damage had a magnitude and distribution which was comparable to the experimental bone damage. We conclude that, although the plastic model could not fully predict the micro motions, it is more suitable for pre-clinical assessment of a press-fit TKR implant than using an elastic bone model.  相似文献   

2.
Post-operative changes in trabecular bone morphology at the cement-bone interface can vary depending on time in service. This study aims to investigate how micromotion and bone strains change at the tibial bone-cement interface before and after cementation. This work discusses whether the morphology of the post-mortem interface can be explained by studying changes in these mechanical quantities. Three post-mortem cement-bone interface specimens showing varying levels of bone resorption (minimal, extensive and intermediate) were selected for this study Using image segmentation techniques, masks of the post-mortem bone were dilated to fill up the mould spaces in the cement to obtain the immediately post-operative situation. Finite element (FE) models of the post-mortem and post-operative situation were created from these segmentation masks. Subsequent removal of the cement layer resulted in the pre-operative situation. FE micromotion and bone strains were analyzed for the interdigitated trabecular bone. For all specimens micromotion increased from the post-operative to the post-mortem models (distally, in specimen 1: 0.1 to 0.5 µm; specimen 2: 0.2 to 0.8 µm; specimen 3: 0.27 to 1.62 µm). Similarly bone strains were shown to increase from post-operative to post-mortem (distally, in specimen 1: −185 to −389 µε; specimen 2: −170 to −824 µε; specimen 3: −216 to −1024 µε). Post-mortem interdigitated bone was found to be strain shielded in comparison with supporting bone indicating that failure of bone would occur distal to the interface. These results indicate that stress shielding of interdigitated trabeculae is a plausible explanation for resorption patterns observed in post-mortem specimens.  相似文献   

3.
Understanding the load transfer within a resurfaced femur is necessary to determine the influence of mechanical factors on potential failure mechanisms such as early femoral neck fractures and stress shielding. In this study, an attempt has been made to measure the stem-bone micromotion and implant cup-bone relative displacements (along medial-lateral and anterior-posterior direction), in addition to surface strains at different locations and orientations on the proximal femur and to compare these measurements with those predicted by equivalent FE models. The loading and the support conditions of the experiment were closely replicated in the FE models. A new experimental set-up has been developed, with specially designed fixtures and load application mechanism, which can effectively impose bending and deflection of the tested femurs, almost in any direction. High correlation coefficient (0.92–0.95), low standard error of the estimate (170–379 με) and low percentage error in regression slope (12.8–17.5%), suggested good agreement between the numerical and measured strains. The effect of strain shielding was observed in two (out of eight) strain gauges located on the posterior side. A pronounced strain increase occurred in strain gauges located on the anterior head and neck regions after implantation. Experimentally measured stem-bone micromotion and implant cup-bone relative displacements (0–13.7 μm) were small and similar in trends predicted by the FE models (0–25 μm). Despite quantitative deviations in the measured and numerical results, it appears that the FE model can be used as a valid predictor of the actual strain and stem-bone micromotion.  相似文献   

4.
Otosclerosis is a complex disease characterized by an abnormal bone turnover of the otic capsule resulting in conductive hearing loss. Recent findings have shown that angiotensin II (Ang II), a major effector peptide of the renin–angiotensin system, plays an important role in the pathophysiology of otosclerosis, most likely by its proinflammatory effects on the bone cells. Because reactive oxygen species play a role both in inflammation and in the cellular signaling pathway of Ang II, the appearance of protein adducts of the “second messenger of free radicals,” the aldehyde 4-hydroxynonenal (HNE), in otosclerotic bone has been analyzed. Immunohistochemical analysis of HNE-modified proteins in tissue samples of the stapedial bones performed on 15 otosclerotic patients and 6 controls revealed regular HNE–protein adducts present in the subperiosteal parts of control bone specimens, whereas irregular areas of a pronounced HNE–protein adduct presence were found within stapedial bone in cases of otosclerosis. To study possible interference by HNE and Ang II in human bone cell proliferation, differentiation, and induction of apoptosis we used an in vitro model of osteoblast-like cells. HNE interacted with Ang II in a dose-dependent manner, both by forming HNE–Ang II adducts, as revealed by immunoblotting, and by modifying its effects on cultured cells. Namely, treatment with 0.1 nM Ang II and 2.5 μM HNE stimulated proliferation, whereas treatment with 10 μM HNE or in combination with Ang II (0.1, 0.5, and 1 nM) decreased cell proliferation. Moreover, 10 μM HNE alone and with Ang II (except if 1 nM Ang II was used) increased cellular differentiation and apoptosis. HNE at 5 μM did not affect differentiation nor significantly change apoptosis. On the other hand, when cells were treated with lower concentrations of HNE and Ang II we observed a decrease in cellular differentiation (combination of 1.0 or 2.5 μM HNE with 0.1 nM Ang II) and decrease in apoptosis (0.1 and 0.5 nM Ang II). Cellular necrosis was increased with 5 and 10 μM HNE if given alone or combined with Ang II, whereas 0.5 nM Ang II and combination of 1 μM HNE with Ang II (0.1 and 0.5 nM) reduced necrosis. These results indicate that HNE and Ang II might act mutually dependently in the regulation of bone cell growth and in the pathophysiology of otosclerosis.  相似文献   

5.
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70 ± 0.19 m/s vs 1.72 ± 0.20 m/s, respectively) and running (4.04 ± 0.17 m/s vs 4.10 ± 0.13 m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p < 0.05–0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p < 0.01) leading to an increase in frontal plane moments at the hip (p < 0.05) and knee (p < 0.05) joints and a reduction at the ankle joint (p < 0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking.  相似文献   

6.
In this study we investigated balancing responses to lateral perturbations during slow walking (0.85 m/s). A group of seven healthy individuals walked on an instrumented treadmill while being perturbed at the level of waist at left heel strike in outward and inward lateral directions. Centre of mass (COM) and centre of pressure (COP), rotation of pelvis around vertical axis, step lengths, step widths and step times were assessed. The results have shown that beside control of COP in lateral direction, facilitated by adequate step widths, control of COP in sagittal direction, slowing down movement of COM was present after commencement of lateral perturbations. Sagittal component of COM was significantly retarded as compared to unperturbed walking for both inward (4.32 ± 1.29 cm) and outward (9.75 ± 2.17 cm) perturbations. This was necessary since after an inward perturbation first step length (0.29 ± 0.04 m compared to 0.52 ± 0.02 m in unperturbed walking) and step time (0.45 ± 0.05 s compared to 0.61 ± 0.04 s in unperturbed walking) were shortened while after an outward perturbation first two step lengths (0.36 ± 0.05 m and 0.32 ± 0.11 m compared to 0.52 ± 0.03 m in unperturbed walking) were shortened that needed to be accommodated by the described modulation of COP in sagittal plane. In addition pronounced pelvis rotation assisted in bringing swing leg to new location. The results of this study show that counteracting lateral perturbations at slow walking requires adequate response in all three planes of motion.  相似文献   

7.
Unstable shoes (US) continually perturb gait which can train the lower limb musculature, but muscle co-contraction and potential joint stiffness strategies are not well understood. A shoe with a randomly perturbing midsole (IM) may enhance these adaptations. This study compares ankle and knee joint stiffness, and ankle muscle co-contraction during walking and running in US, IM and a control shoe in 18 healthy females. Ground reaction forces, three-dimensional kinematics and electromyography of the gastrocnemius medialis and tibialis anterior were recorded. Stiffness was calculated during loading and propulsion, derived from the sagittal joint angle-moment curves. Ankle co-contraction was analysed during pre-activation and stiffness phases. Ankle stiffness reduced and knee stiffness increased during loading in IM and US whilst walking (ankle, knee: p = 0.008, 0.005) and running (p < 0.001; p = 0.002). During propulsion, the opposite joint stiffness re-organisation was found in IM whilst walking (both joints p < 0.001). Ankle co-contraction increased in IM during pre-activation (walking: p = 0.001; running: p < 0.001), and loading whilst walking (p = 0.003), not relating to ankle stiffness. Results identified relative levels of joint stiffness change in unstable shoes, providing new evidence of how stability is maintained at the joint level.  相似文献   

8.
《Small Ruminant Research》2009,85(1-3):89-99
We aimed to quantify the sources of variation contributing to the production and quality of cashmere produced in five districts in Osh and Naryn provinces of Kyrgyzstan. In early spring 2008 mid-side cashmere samples were taken from 719 cashmere adult females, and 41 cashmere adult males and castrates. Samples came from 53 villages and a total of 156 farmers’ flocks. For 91 goats from 33 farmers in 13 villages of two districts that had been sampled earlier, cashmere was combed from the goat at the time of a second visit (end of April 2008) when the cashmere would normally be harvested. Following standard cashmere objective measurement, data were examined using general linear modelling to quantify the effects of potential determinants. The mean fibre diameter (MFD) of cashmere differed between provinces (Osh 15.7 μm, Naryn 16.7 μm; P = 4.4 × 10−20). About 42% of the cashmere was <16 μm, 48% was 16.0–18.0 μm and 9.5% was >18.0 μm. Most of the cashmere samples were coloured (81%), with 63% black and 19% white. The percentage of cashmere samples that were white declined as MFD increased (26% < 14 μm to 11% of >18 μm). The primary determinants of cashmere MFD of individual goats were age of goat (range 1.46 μm, P = 1.8 × 10−12) and farm (range 6.5 μm, P = 1.7 × 10−14). The lesser effects detected for sex (range 0.9 μm, P = 0.026) and colour of cashmere (range 1.8 μm, P = 0.023) were based on small sample sizes and are unreliable. Age of goat had important affects on fibre diameter variation (up to 1.7% in coefficient of variation, P = 5.8 × 10−6) and fibre curvature (2.5–5°/mm, P = 2.1 × 10−4). By far the greatest effect on fibre curvature was cashmere MFD (P = 3.0 × 10−104) with a smaller effect of sex (about 5°/mm, P = 3.0 × 10−6). Village effects were detected on fibre diameter variability (range 4.5% in coefficient of variation, P = 0.027) and fibre curvature (range 15°/mm, P = 1.6 × 10−7). There was a strong negative association between increasing MFD and declining fibre curvature (−5.11 ± 0.181°/mm per 1 μm; P = 7.1 × 10−121; r2 = 0.51). Average combed cashmere weight was 164 g, the clean cashmere content was 0.661 and median clean cashmere production was 110 g per goat (range 60–351 g). Combed cashmere production increased with altitude of the village, probably related to different moulting times as spring temperatures warmed up later in higher altitude villages up to 3200 masl. Measurements of combed cashmere MFD were coarser than the mid-side samples taken earlier in the year. There are farmers and cashmere goats in the sampled districts of Kyrgyzstan which produce the finest qualities of commercial cashmere as the vast majority of cashmere is fine, has low variation in fibre diameter and has fibre crimping (curvature) typical of Chinese and Mongolian cashmere. There is substantial scope to increase the production and commercial value of cashmere produced by Kyrgyz goats. In particular, some villages and farmers need to change their buck selection practices if they wish to produce acceptable cashmere. Farmers should separate their finer and white cashmere prior to sale.  相似文献   

9.
To eliminate the diastereomer interference on Telcagepant (MK-0974) determination during clinical study support, on-line high turbulent-flow liquid chromatography (HTLC) methods, HTLC-A and HTLC-B that covered dynamic range of 0.5–500 nM and 5–5000 nM, respectively, were developed. To meet the requirement of rapid assay transfer among multiple laboratories and analysts, a solid-phase extraction (SPE) assay was derived from the existing HTLC-B assay under the same dynamic range. The on-line HTLC assays were achieved through direct injection of plasma samples, extraction of analyte with a Cohesive C18 column (50 mm × 0.5 mm, 50 μm), followed by HPLC separation on a FluoPhase RP column (100 mm × 2.1 mm, 5 μm) and MS/MS detection. The off-line SPE assay used Waters Oasis®HLB μElution plate to extract the analytes from plasma matrix before injecting on a FluoPhase RP column (150 mm × 2.1 mm, 5 μm) for LC–MS/MS analysis. Under both on-line and off-line assay conditions, the diastereomer 1c was chromatographically separated from MK-0974. Cross-validation with the pooled samples demonstrated that both on-line and off-line assays provided comparable data with a difference of <2.6%. The assays were proved to be specific, accurate and reliable, and have been used to support multiple clinical studies. The pros and cons of on-line and off-line assays with regard to man power involved in sample preparation, total analysis time, carryover, cost efficiency, and the requirement for assay transfer are discussed.  相似文献   

10.
PurposeTo evaluate the influence of energy spectra, mesh sizes, high Z element on dose and PVDR in Microbeam Radiation Therapy (MRT) based on 1-D analogy-mouse-head-model (1-D MHM) and 3-D voxel-mouse-head-phantom (3-D VMHP) by Monte Carlo simulation.MethodsA Microbeam-Array-Source-Model was implemented into EGSnrc/DOSXYZnrc. The microbeam size is assumed to be 25 μm, 50 μm or 75 μm in thickness and fixed 1 mm in height with 200 μm c-t-c. The influence of the energy spectra of ID17@ESRF and BMIT@CLS were investigated. The mesh size was optimized. PVDR in 1-D MHM and 3-D VMHP was compared with the homogeneous water phantom. The arc influence of 3-D VMHP filled with water (3-D VMHWP) was compared with the rectangle phantom.ResultsPVDR of the lower BMIT@CLS spectrum is 2.4 times that of ID17@ESRF for lower valley dose. The optimized mesh is 5 µm for 25 µm, and 10 µm for 50 µm and 75 µm microbeams with 200 µm c-t-c. A 500 μm skull layer could make PVDR difference up to 62.5% for 1-D MHM. However this influence is limited (<5%) for the farther homogeneous media (e.g. 600 µm). The peak dose uniformity of 3-D VMHP at the same depth could be up to 8% for 1.85 mm × 1 mm irradiation field, whereas that of 3-D VMHWP is <1%. The high Z element makes the dose uniformity enhance in target. The surface arc could affect the superficial PVDR (from 44% to 21% in 0.2 mm depth), whereas this influence is limited for the more depth (<1%).ConclusionAn accurate MRT dose calculation algorithm should include the influence of 3-D heterogeneous media.  相似文献   

11.
《Palaeoworld》2016,25(1):116-127
Coniferous phytoliths in sediments are an effective tool for detecting the historical appearance of conifers. However, at the timberline in mountainous areas, such coniferous phytoliths are easily confused with grass phytoliths. This study analyses modern phytoliths from 17 conifer plants. Six common types and six rare types were identified. The conifers studied produce abundant blocky polyhedral and cubic (in the average 30–40 μm size range), blocky scrobiculate (average 30–40 μm), tabular elongate unsculpted (length 50–100 μm, width 10–20 μm), tabular elongate cavate (length 50–150 μm, width ∼10 μm), tabular elongate dendritic (50–100 μm × 10–20 μm), and irregular oblong (20–40 μm) phytoliths. This paper aims to show morphological characteristics of coniferous phytoliths in China, and to show how the common coniferous phytoliths differ from similar grass phytolith types, such as blocky polyhedral coniferous phytoliths from silicified parallelepipedal bulliform cells produced by grass. Blocky polyhedral and cubic phytoliths are the commonest coniferous phytoliths found in the sediments, but need to be carefully distinguished from grass parallelepipedal bulliform cells. This study indicates that clearly protruding ridges and irregular inward edges are essential features of cubic and polyhedral morphotypes produced by conifers. Results of this paper might provide important material for the study of paleovegetation and paleoecology of mountainous areas, especially at the timberline.  相似文献   

12.
Exogenous and endogenous stages of Eimeria perforans naturally infected rabbits in Saudi Arabia were described. The prevalence of infection was 75%. Oocysts were ovoid to elliptical and measured 16 × 10 μm. The four dizoic sporocysts were ovoid and measured 7 × 5 μm. Endogenous stages were restricted to the duodenum. Meronts, microgamonts, macrogamonts and young oocysts were recorded and described.  相似文献   

13.
Henneguya jocu n. sp. (Myxosporea, Myxobolidae) is described from the gill lamellae of the marine teleost fish Lutjanus jocu, with a focus on ultrastructural and molecular features. This myxosporean forms subspherical cysts up to ∼260 μm × 130 μm long, and develops asynchronously. Mature myxospores ellipsoidal with a bifurcated caudal process. Myxospore length 10.9 ± 0.4 μm (n = 50); width, 8.2 ± 0.3 μm (n = 50); and thickness, 2.9 ± 0.5 μm (n = 50). Two equal caudal processes, 34.1 ± 1.0 μm long (n = 50); and total myxospore length, 45.2 ± 1.0 μm (n = 50). Two symmetric valves surround two ellipsoidal polar capsules, 5.0 ± 0.3 × 1.4 ± 0.2 μm (n = 20), each containing an isofilar polar filament forming 4–5 coils along the inner wall of these structures, as well as a binucleated sporoplasm presenting a spherical vacuole and several globular sporoplasmosomes. Both the morphological data and molecular analysis of the SSU rDNA gene identify this parasite as a new species of the genus Henneguya. Maximum Likelihood and Maximum Parsimony analyses further indicate that the parasite clusters within others marine Myxobolidae species, forming a group alongside other Henneguya species described from marine hosts.  相似文献   

14.
《Small Ruminant Research》2003,47(3):227-231
Experiments were conducted to investigate the size distribution of goat steroidogenic luteal cells throughout pregnancy. Corpora lutea were collected from very early (<6 weeks), early (6–8 weeks), middle (9–14 weeks) or late (15–18 weeks) stages of pregnancy. Luteal tissue was dissociated into single-cell suspension by enzyme treatments. Cells were stained for 3β-hydroxysteroid dehydrogenase (3β-HSD) activity, a marker for steroidogenic cells. The steroidogenic cells covered a wide spectrum of size ranging from 5 to 45 μm in diameter. There was a significant increase in mean cell diameter (P>0.01) as pregnancy progressed. Mean diameter of 3β-HSD positive cells increased from 14.73±0.35 μm in the corpus luteum of very early pregnancy to 24.20±0.45 μm in the corpus luteum of late pregnancy. The ratio of large (>20 μm in diameter) to small (5–20 μm in diameter) luteal cells was 0.28:1.0 in very early pregnancy, with the 7.5–15 μm cell size class being dominant. However, the ratio of large-to-small luteal cells was increased to 1.77:1.0 μm as pregnancy advanced and 25–35 μm cell sizes became predominant. It is likely that small luteal cells could develop into large cells as pregnancy progresses. Development of pregnancy is also associated with an increase in size of steroidogenic luteal cells.  相似文献   

15.
We present herein a sensitive and selective assay for the determination of oxycodone and its main metabolites, oxymorphone, noroxycodone and noroxymorphone in human plasma, using column-switching and liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Sample preparation comprised protein precipitation with perchloric acid. After neutralization, the supernatant was injected without any evaporation step onto a polymeric, pH-resistant cartridge (HySphere Resin GP 10–12 μm) for sample clean-up (Prospekt II). The latter operation was achieved by using alkaline conditions to ensure retention of analytes and methanol for matrix interference removal. More than two hundred plasma samples could be analyzed with a single cartridge. Analytes were desorbed in the backflush mode and were separated on a conventional reversed phase column (XTerra MS 4.6 × 50 mm, 3.5 μm), using an acidic mobile phase (i.e. containing 0.1% of formic acid). Mass spectrometric detection was achieved with a 4000 Q TRAP equipped with an atmospheric pressure chemical ionization (APCI) source, in positive ionization mode, operated in the selected reaction monitoring mode (SRM). Starting from a plasma volume of 250 μl, quantification ranges were 25–10,000 pg/ml for OXM and NOXM and 50–10,000 pg/ml for OXC and NOXC. Accuracy was found to be within 98% and 108% and precision better than 7%. Replicate determination of incurred or study samples ensured the method to be reproducible and usable for clinical studies.  相似文献   

16.
One of the crucial factors for short- and long-term clinical success of total hip arthroplasty cementless implants is primary stability. Indeed, motion at the bone–implant interface above 40 μm leads to partial bone ingrowth, while motion exceeding 150 μm completely inhibits bone ingrowth. The aim of this study was to investigate the effect of two cementless femoral stem designs with different lengths on the primary stability. A finite element model of a composite Sawbones® fourth generation, implanted with five lengths of the straight prosthesis design and four lengths of the curved prosthesis design, was loaded with hip joint and abductor forces representing two physiological activities: fast walking and stair climbing. We found that reducing the straight stem length from 146 to 54 mm increased the average micromotion from 17 to 52 μm during fast walking, while the peak value increased from 42 to 104 μm. With the curved stem, reducing length from 105 to 54 mm increased the average micromotion from 10 to 29 μm, while the peak value increased from 37 to 101 μm. Similar findings are obtained for stair climbing for both stems. Although the present study showed that femoral stem length as well as stem design directly influences its primary stability, for the two femoral stems tested, length could be reduced substantially without compromising the primary stability. With the aim of minimising surgical invasiveness, newer femoral stem design and currently well performing stems might be used with a reduced length without compromising primary stability and hence, long-term survivorship.  相似文献   

17.
Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0 ± 4.7 yrs, 1.80 ± 0.05 m, 74.5 ± 8.2 kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1 m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint’s contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking.  相似文献   

18.
《Mycological Research》2006,110(8):951-956
Anthracnose of lentil, caused by Colletotrichum truncatum is a serious threat to lentil (Lens culinaris) grown in western Canada. The teleomorph stage of this pathogen was induced to form under laboratory conditions. Random pairing of single conidium isolates enabled the identification of fertile isolates. The individual isolates of this fertile pair were crossed with 14 other isolates, and all isolates were also incubated alone. Self-sterility was observed for all 16 isolates tested. Three isolates did not produce perithecia with either tester isolate, and none of the isolates tested produced perithecia with both tester isolates. Perithecia were brown–black, superficial, solitary or in small groups, obpyriform to ovate or ampulliform, 200–520 × 110–320 μm (mean: 350 × 200 μm). Asci were cylindrical, narrowing slightly at the apex, unitunicate, evanescent, 53–142 × 5–14 μm (mean: 90 × 8 μm), and contained eight ascospores. Ascospores were hyaline, aseptate, oblong, 12–20 × 5–8 μm (mean: 15.7–6.7 μm). The characteristics agree with those described for the genus Glomerella, and the species was named G. truncata sp. nov. The morphology of the new species is compared with that of other species in the genus, and future research on G. truncata is described.  相似文献   

19.
A morphometric study on H. armigera antenna showed four styles of sensilla, i.e., styloconica, chaetica, coeloconica, and trichodea, and their numbers were estimated. Sensilla trichodea detect inter and intraspecific communication signals and was the most numerous. They were divided into three types: type I, the longest, with a length of 34.04 ± 3.16 μm and about 2.16 to 2.42 μm in diameter at its base; 2) type II, intermediate, with a length of 22.58 ± 0.77 μm and basal diameter of 1.8–2.52 μm; 3) type III, the shortest sensilla trichodea, with a length of 7.62 ± 0.4 μm and a range in diameter similar to that of type II. The length of the female sensilla trichodea was longer than that of the male. The total number of sensilla trichodea was estimated to be 7520 on the antenna of the female, and 6831 on the male antenna. The lengths of the sensilla trichodea type I and type III were significantly different on male (t = 4.6881, P = 0.0034) and female antenna (t = 18.9852, P = 0.0001). An estimation of the predicted surface area of the most numerous type I on sampled segments between the 12th and 20th segments from a female of H. armigera showed a surface area of 5 × 103 μm2 and a sensillar density of 38 sensilla/103 μm2. The fraction of sensilla-occupied surface area was 0.4 μm2.  相似文献   

20.
The mechanical properties of tissues are increasingly recognized as important cues for cell physiology and pathology. Nevertheless, there is a sparsity of quantitative, high-resolution data on mechanical properties of specific tissues. This is especially true for the central nervous system (CNS), which poses particular difficulties in terms of preparation and measurement. We have prepared thin slices of brain tissue suited for indentation measurements on the micrometer scale in a near-native state. Using a scanning force microscope with a spherical indenter of radius ~20 μm we have mapped the effective elastic modulus of rat cerebellum with a spatial resolution of 100 μm. We found significant differences between white and gray matter, having effective elastic moduli of K=294±74 and 454±53 Pa, respectively, at 3 μm indentation depth (ng=245, nw=150 in four animals, p<0.05; errors are SD). In contrast to many other measurements on larger length scales, our results were constant for indentation depths of 2–4 μm indicating a regime of linear effective elastic modulus. These data, assessed with a direct mechanical measurement, provide reliable high-resolution information and serve as a quantitative basis for further neuromechanical investigations on the mechanical properties of developing, adult and damaged CNS tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号