首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Osteochondrosis dissecans (OD) is a process of subchondral bone necrosis occurring predominantly in young individuals at specific sites. The aetiology of this disease remains controversial with mechanical processes due to trauma and/or ischaemic factors being proposed. This study aims at explaining the aetiology of OD in the knee joint as a result of the particular deformation of the condyles. A finite element analysis of the distal third of the femur was performed. A three-dimensional model was developed based on computed tomography scans of a normal femur, consisting of cortical bone, cancellous bone and articular cartilage. This model was subjected to physiological loads at 0, 30, 60 and 90 degrees of knee flexion. A complex deformation was found within each condyle as well as between the two condyles. Both medial and lateral condyles are deformed in the medio-lateral direction and at the same time compressed between the patella and the tibia in the antero-posterior direction. This effect is highest at 60 degrees of knee flexion. In both planes, the medial condyle is distorted more than the lateral one. Strain concentration in the subchondral bone facing the patella varies with flexion, especially for angles exceeding 60 degrees. The deformation of the femur in the predominant locus of OD in the medial condyle exceeds that of the lateral condyle considerably. The analysis shows that repeated vigorous exercise including extreme knee flexion may produce rapidly changing strains which in turn could ultimately be responsible for local subchondral bone collapse.  相似文献   

2.
In vivo patellofemoral forces in high flexion total knee arthroplasty   总被引:1,自引:0,他引:1  
This study compares the in vivo patellofemoral contact forces generated in high flexion fixed bearing posterior cruciate retaining Nexgen CR-Flex (PCR) and high flexion posterior stabilized Nexgen LPS-Flex (LPS) TKAs with that of normal knees from full knee extension to maximum weight bearing flexion. Ten patients with the PCR total knee arthroplasty (TKA), ten with the LPS TKA and seven patients having normal knees were fluoroscoped while performing a deep knee bend activity. In vivo femorotibial kinematics, obtained from 3D-to-2D registration technique, and patellar kinematics obtained by direct measurements from the fluoroscopic images were entered into a 3D inverse dynamics mathematical model to determine the in vivo contact forces at the knee. The variation in the patellofemoral and quadriceps forces with flexion were found to be similar across the three groups-increasing from full extension to 90 degrees of flexion, reaching a maximum between 90 degrees and 120 degrees of flexion and then decreasing until maximum flexion. At maximum knee flexion, these forces were found to be significantly lower in the normal knees than in the TKAs. The patellar ligament to quadriceps force ratio decreased with the increase in knee flexion while the patellofemoral to quadriceps force ratio increased. A strong correlation was found to exist between the patellofemoral forces, the femorotibial contact forces and the forces in the extensor mechanism. The PCR TKA in this study exhibited greater resemblance to the normal patients with respect to the patellofemoral forces than the LPS TKA though significant differences in the two implant types were not observed.  相似文献   

3.
Resurfacing of the femur has experienced a revival, particularly in younger and more active patients. The implant is generally cemented onto the reamed trabecular bone and theoretical remodelling for this configuration, as well as uncemented variations, has been studied with relation to component positioning for the most common designs. The purpose of this study was to investigate the influence of different interface conditions, for alternative interior implant geometries, on bone strains in comparison to the native femur, and its consequent remodelling. A cylindrical interior geometry, two conical geometries and a spherical cortex-preserving design were compared with a standard implant (ASR, DePuy International, Ltd., UK), which has a 3° cone. Cemented as well as uncemented line to line and press-fit conditions were modelled for each geometry. A patient-specific finite element model of the proximal femur was used with simulated walking loads. Strain energy density was compared between the reference and resurfaced femur, and input into a remodelling algorithm to predict density changes post-operatively. The common cemented designs (cylindrical, slightly conical) had strain shielding in the superior femoral head (>35% reduction) as well as strain concentrations (strain>5%) in the neck regions near the implant rim. The cortex-preserving (spherical) and strongly conical designs showed less strain shielding. In contrast to the cemented implants, line to line implants showed a density decrease at the centre of the femoral head, while all press-fit versions showed a density increase (>100%) relative to the native femur, which suggests that uncemented press-fit implants could limit bone resorption.  相似文献   

4.
Isolated patellofemoral (PF) arthritis of the knee is a common cause of anterior knee pain and disability. Patellofemoral arthroplasty (PFA) is a bone conserving solution for patients with PF degeneration. Failure mechanisms of PFA include growing tibiofemoral arthritis and loosening of components. The implant loosening can be associated with bone resorption or fatigue-failure of bone by overload. This research work aims at determining the structural effects of the implantation of PF prosthesis Journey PFJ (Smith & Nephew, Inc., Memphis, TN, USA) on femoral cancellous bone. For this purpose, the finite element method is considered to perform computational simulations for different conditions, such as well-fixed and loosening scenarios. From the global results obtained, in the well-fixed scenario, a decrease in strain on cancellous bone was noticed, which can be related to bone resorption. In the loosening scenario, when the cement layer becomes inefficient, a significant increase in cancellous bone strain was observed, which can be associated with bone fatigue-failure.These strain changes suggest a weakness of the femur after PFA.  相似文献   

5.
Theoretical concerns about the use of cemented or press-fit stems in revision total knee arthroplasty (TKA) include stress shielding with adverse effects on prosthesis fixation. Revision TKA components are commonly stemmed to protect the limited autogenous bone stock remaining. Revision procedures with the use of stems can place abnormal stresses through even normal bone by their constrained design, type of materials and fixation method and may contribute for bone loss. Experimental quantification of strain shielding in the proximal synthetic tibia following TKA is the main purpose of the present study. In this study, cortical bone strains were measured experimentally with tri-axial strain gauges in synthetic tibias before and after in vitro knee surgery. Three tibias were implanted with cemented and press-fit stem augments and solely with a tibial tray (short monobloc stem) of the P.F.C. Sigma Modular Knee System. The difference between principal strains of the implanted and the intact tibia was calculated for each strain gauge position. The results demonstrated a pronounced strain-shielding effect in the proximal level, close to tibial tray with the cemented stem augment. The press-fit stem presented a minor effect of strain shielding but was more extensively throughout the stem. An increase of strains closely to the distal tip of the cemented and the press-fit stem augment was observed. This suggests for a physiological condition, a potential effect of bone resorption at the proximal region for the cemented stem augment. The localized increase of strains in stems tip can be related with the clinical finding of the pain, at the end of stem after revision TKA.  相似文献   

6.
目的:探讨锁定板MIPO技术治疗老年人股骨远端骨折的临床效果。方法:回顾性分析2009年1月-2012年12月运用锁定板MIPO技术治疗老年人股骨远端骨折患者的临床资料,评估骨折类型、骨折愈合时间、6个月时的膝关节活动度和膝关节功能评分及临床并发症的发生情况。结果:共纳入33例老年人股骨远端骨折患者,平均年龄72岁,其中2例随访失败。87%的股骨远端骨折是关节外骨折;骨折平均愈合时间为12.56(8~29)周;术后6个月时平均活动范围超过105°:伸0°~30°,屈90°~140°;术后6个月的平均膝功能评分89.5;治疗过程中无植入失败、骨折不愈合和感染发生;术后早期发生下肢深静脉血栓(DVT)7例(22.6%),均在膝关节水平以下。结论:锁定板结合MIPO技术是一种治疗老年人股骨远端骨折安全有效的方法,但要注意预防术后DVT的发生。  相似文献   

7.
With particular interest on total hip arthroplasty (THA), optimization of orthopedic prostheses is employed in this work to minimize the probability of implant failure or maximize prosthesis reliability. This goal is often identified with the reduction of stress concentrations at the interface between bone and these devices. However, aseptic loosening of the implant is mainly influenced by bone resorption phenomena revealed in some regions of the femur when a prosthesis is introduced. As a consequence, bone resorption appears due to stress shielding, that is to say the decrease of the stress level in the implanted femur caused by the significant load carrying of the prosthesis due to its higher stiffness. A maximum stiffness topological optimization-based (TO) strategy is utilized for non-linear static finite element (FE) analyses of the femur–implant assembly, with the goal of reducing stress shielding in the femur and to furnish guidelines for re-designing hip prostheses. This is accomplished by employing an extreme accuracy for both the three-dimensional reconstruction of the femur geometry and the material properties maps assigned as explicit functions of the local densities.  相似文献   

8.
Patellar resurfacing during knee replacement is still under debate, with several studies reporting higher incidence of anterior knee pain in unresurfaced patellae. Congruency between patella and femur impacts the mechanics of the patellar cartilage and strain in the underlying bone, with higher stresses and strains potentially contributing to cartilage wear and anterior knee pain. The material properties of the articulating surfaces will also affect load transfer between femur and patella. The purpose of this study was to evaluate the mechanics of the unresurfaced patella and compare with natural and resurfaced conditions in a series of finite element models of the patellofemoral joint. In the unresurfaced analyses, three commercially available implants were compared, in addition to an 'ideal' femoral component which replicated the geometry, but not the material properties, of the natural femur. Hence, the contribution of femoral component material properties could be assessed independently from geometry changes. The ideal component tracked the kinematics and patellar bone strain of the natural knee, but had consistently inferior contact mechanics. In later flexion, compressive patellar bone strain in unresurfaced conditions was substantially higher than in resurfaced conditions. Understanding how femoral component geometry and material properties in unresurfaced knee replacement alters cartilage contact mechanics and bone strain may aid in explaining why the incidence of anterior knee pain is higher in the unresurfaced population, and ultimately contribute to identifying criteria to pre-operatively predict which patients are suited to an unresurfaced procedure and reducing the incidence of anterior knee pain in the unresurfaced patient population.  相似文献   

9.
Misalignment and soft-tissue imbalance in total knee arthroplasty (TKA) can cause discomfort, pain, inadequate motion and instability that may require revision surgery. Balancing can be defined as equal collateral ligament tensions or equal medial and lateral compartmental forces during the flexion range. Our goal was to study the effects on balancing of linear femoral component misplacements (proximal, distal, anterior, posterior); and different component rotations in mechanical alignment compared to kinematic alignment throughout the flexion path. A test rig was constructed such that the position of a standard femoral component could be adjusted to simulate the linear and rotational positions. With the knee in neutral reference values of the collateral tensions were adjusted to give anatomic contact force patterns, measured with an instrumented tibial trial. The deviations in the forces for each femoral component position were then determined. Compartmental forces were significantly influenced by 2 mm linear errors in the femoral component placement. However, the errors were least for a distal error, equivalent to undercutting the distal femur. The largest errors mainly increase the lateral condyle force, occurred for proximal and posterior component errors. There were only small contact force differences between kinematic and mechanical alignment. Based on these results, surgeons should avoid overcutting the distal femur and undercutting the posterior femur. However, the 2–3 degrees varus slope of the joint line as in kinematic alignment did not have much effect on balancing, so mechanical or kinematic alignment were equivalent.  相似文献   

10.
Analysis of a femoral hip prosthesis designed to reduce stress shielding   总被引:11,自引:0,他引:11  
The natural stress distribution in the femur is significantly altered after total hip arthroplasty (THA). When an implant is introduced, it will carry a portion of the load, causing a reduction of stress in some regions of the remaining bone. This phenomenon is commonly known as stress shielding. In response to the changed mechanical environment the shielded bone will remodel according to Wolff's law, resulting in a loss of bone mass through the biological process called resorption. Resorption can, in turn, cause or contribute to loosening of the prosthesis. The problem is particularly common among younger THA recipients. This study explores the hypothesis that through redesign, a total hip prosthesis can be developed to substantially reduce stress shielding. First, we describe the development of a new femoral hip prosthesis designed to alleviate this problem through a new geometry and system of proximal fixation. A numerical comparison with a conventional intramedullary prosthesis as well as another proximally fixed prosthesis, recently developed by Munting and Verhelpen (1995. Journal of Biomechanics 28(8), 949–961) is presented. The results show that the new design produces a more physiological stress state in the proximal femur.  相似文献   

11.
Kneeling is required during daily living for many patients after total knee replacement (TKR), yet many patients have reported that they cannot kneel due to pain, or avoid kneeling due to discomfort, which critically impacts quality of life and perceived success of the TKR procedure. The objective of this study was to evaluate the effect of component design on patellofemoral (PF) mechanics during a kneeling activity. A computational model to predict natural and implanted PF kinematics and bone strains after kneeling was developed and kinematics were validated with experimental cadaveric studies. PF joint kinematics and patellar bone strains were compared for implants with dome, medialized dome, and anatomic components. Due to the less conforming nature of the designs, change in sagittal plane tilt as a result of kneeling at 90° knee flexion was approximately twice as large for the medialized-dome and dome implants as the natural case or anatomic implant, which may result in additional stretching of the quadriceps. All implanted cases resulted in substantial increases in bone strains compared with the natural knee, but increased strains in different regions. The anatomic patella demonstrated increased strains inferiorly, while the dome and medialized dome showed increases centrally. An understanding of the effect of implant design on patellar mechanics during kneeling may ultimately provide guidance to component designs that reduces the likelihood of knee pain and patellar fracture during kneeling.  相似文献   

12.
Patellofemoral pain is a common knee disorder with a multi-factorial etiology related to abnormal patellar tracking. Our hypothesis was that the pattern of three-dimensional rotation and translation of the patella induced by selective activation of individual quadriceps components would differ between subjects with patellofemoral pain and healthy subjects. Nine female subjects with patellofemoral pain and seven healthy female subjects underwent electrical stimulation to selectively activate individual quadriceps components (vastus medialis obliquus, VMO; vastus medialis lateralis, VML; vastus lateralis, VL) with the knee at 0° and 20° flexion, while three-dimensional patellar tracking was recorded. Normalized direction of rotation and direction of translation characterized the relative amplitudes of each component of patellar movement. VMO activation in patellofemoral pain caused greater medial patellar rotation (distal patellar pole rotates medially in frontal plane) at both knee positions (p<0.01), and both VMO and VML activation caused increased anterior patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects at 20° knee flexion. VL activation caused more lateral patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects. In healthy subjects the 3-D mechanical action of the VMO is actively modulated with knee flexion angle while such modulation was not observed in PFP subjects. This could be due to anatomical differences in the VMO insertion on the patella and medial quadriceps weakness. Quantitative evaluation of the influence of individual quadriceps components on patellar tracking will aid understanding of the knee extensor mechanism and provide insight into the etiology of patellofemoral pain.  相似文献   

13.
Using a three-dimensional (3D) modality to image patients' knees before and after total knee arthroplasty (TKA) allows researchers and clinicians to evaluate causes of pain after TKA, differences in implant design, and changes in the articular geometry as a result of surgery. Computed tomography (CT) has not been fully utilized to date for evaluating the knee after TKA due to metal artifacts obscuring part of the image. We describe an accurate, validated protocol, which has been implemented in vivo, that improves visibility of the patellofemoral joint, matches implant models automatically in 3D, segments preoperative bone semi-automatically, detects and sets coordinate systems automatically, determines the six degrees of freedom of knee pose and geometry, and allows for multiple other measurements that are clinically relevant. Subjects are imaged at 0° and 30° knee flexion, while pushing on a custom-made knee rig to provide partial loadbearing. With some modifications, the protocol can be adopted by any group with access to a CT scanner and image analysis software, allowing for the investigation of numerous clinical and biomechanical questions.  相似文献   

14.
Newer designs of total knee arthroplasty (TKA), through the use of added degrees of constraint, attempt to provide a "guided motion" to restore more normal and predictable kinematics. Two such design philosophies are the posterior stabilised (PS) using a cam-post and the medial pivot (MP) concepts. Knee kinematics of 12 patients with a PS TKA, 13 subjects with a MP TKA and 10 normal subjects were compared. For kinematic assessment, patients underwent fluoroscopic assessment of the knee during a step-up exercise and deep knee bend. Fluoroscopic images were corrected for distortion and assessed using 3D model fitting to determine relative 3D motion, and a 2D method to measure the patellar tendon angle (PTA) as function of knee flexion. For the PS design the cam-post mechanism engaged between 70 degrees and 100 degrees flexion. Between extension and 50 degrees there was forward motion of the contact points. Beyond 60 degrees both condyles rolled moved posteriorly. The majority of the external rotation of the femur occurred between 50 degrees and 80 degrees . The PTA was lower than normal in extension and higher than normal in flexion. The MP exhibited no anterior movement throughout the rage of motion. The medial condyle moved minimally. The lateral contact point moved posteriorly from extension to flexion. The femur rotated externally throughout the range of flexion analysed. The PTA was similar to normal from extension to mid flexion and then higher than normal beyond to high flexion. The PS design fails to fully restrain paradoxical anterior movement and although the cam engages, it does not contribute significantly to overall rollback. The MP knee does not show significant anterior movement, the medial pivot concept appears to achieve near normal kinematics from extension to 50 degrees of knee flexion. However, the results show that at high flexion this design does not achieve normal knee kinematics.  相似文献   

15.
Early loosening and implant migration are two problems that lead to failures in cementless (press-fit) femoral knee components of total knee replacements. To begin to address these early failures, this study determined the anterior-posterior mechanical properties from four locations in the human distal femur. Thirty-three cylindrical specimens were removed perpendicular to the press-fit surface after the surgical cuts on 10 human cadaveric femurs (age 71.5+/-14.2 years) had been made. Compression testing was performed that utilized methods to reduce the effects of end-artifacts. The bone mineral apparent density (BMAD), apparent modulus of elasticity, yield and ultimate stress, and yield and ultimate strain were measured for 28 cylindrical specimens. The apparent modulus, yield and ultimate stress, and yield and ultimate strain each significantly differed (p<0.05) in the superior and inferior locations. Linear and power law relationships between superior and inferior mechanical properties and BMAD were determined. The inferior apparent modulus and stresses were higher than those in the superior locations. These results show that the press-fit fixation characteristics of the femoral knee component differ on the anterior shield and posterior condyles. This information will be useful in the assignment of mechanical properties in finite element models for further investigations of femoral knee components. The property-density relations also have applications for implant design and preoperative assessment of bone strength using clinically available tools.  相似文献   

16.
Two-dimensional, finite element studies were conducted of the proximal tibia before and after joint arthroplasty. Equivalent-thickness models projected onto the mid-frontal plane were created for the natural, proximal tibia and for the proximal tibia with four different types of tibial plateau components. All components simulated bony ingrowth fixation, i.e. no cement layer existed between component and bone. In addition, the interface between component and bone was assumed to be intimately connected, representing complete bony ingrowth and a rigid state of fixation. Loads consisted of bi-condylar and uni-condylar forces. Results indicated that conventional plateau designs with central posts or multiple pegs led to higher stress magnitudes in the trabecular bone near the distal ends of the post/pegs and stress shielding at more proximal locations. A design without posts or pegs whose interface geometry mimics the epiphyseal plate minimizes bone stress shielding. An implant consisting of separate components covering each condyle was found effective in limiting component tilting and the consequent tensile stresses caused by non-symmetrical, uni-condylar loading.  相似文献   

17.
目的:探讨一种新型的适合于儿童的非骨水泥固定型股骨柄设计特征,并通过随访获得其临床效果。方法:选取2010年9月~2013年4月在我科植入新型非骨水泥股骨柄的6名儿童患者,其中男1例,女5例;年龄8.5±3.2岁(5~11岁)。病理诊断结果骨肉瘤患者5例,恶性神经鞘瘤患者1例;右股骨下端患者5例,左股骨下端患者1例;其中一例患者术前有病理骨折。6例患者在我科行双动半膝关节置换术,其中股骨下端均采用了新型非骨水泥假体柄。采用Enneking骨肌肉肿瘤置换后下肢功能评定标准对患肢行功能评价,影像学重点评估股骨柄在髓腔放置位置是否得当、股骨柄假体有无松动、有无应力遮挡、骨溶解等现象,并测量术后患者患肢短缩畸形数据。结果:6例患者随访时间32个月(14~54个月),除1例5岁女童术前肢体条件较差在术后14个月行膝关节融合手术,其余无翻修病例,置换关节均无感染、折断等现象。MSTS评分21.33分;射线片示所有患者股骨髓腔内假体柄放置位置满意,股骨侧及胫腓骨侧假体周围未见骨溶解。结论:新型非骨水泥固定型股骨柄设计合理,早期稳定性可,后期可取得满意的生物固定效果。  相似文献   

18.
Failure of total knee arthroplasty is relatively often caused by problems of the patellofemoral replacement. The purpose of this study was to analyze the distribution of stresses within an anatomical patella and the changes in stress distribution after patellar resurfacing with a Miller-Galante I patellar implant using two- and three dimensional finite element models (FEM). To assess validity, FEM results were compared with morphological findings from contact radiographs and densitographs. Internal orientation of bone trabeculae is in good agreement with the orientation of theoretically calculated principal stresses. Almost unchanged principal tensile stresses after implantation, together with the lack of extreme stress peaks within the cancellous bone ensure stress compatibility of the implant. In the case of a firmly seated implant with good bone ingrowth, increased von Mises stresses are found near the fixation peg/plate junction. Their relevance for improved bone ingrowth near this part of the interface is emphasized. At the same time, material failure at the peg/plate junction can be better understood. An analysis of the early postoperative period assuming nonlinear interface conditions failed to demonstrate an uniform distribution of normal and tangential interface forces.  相似文献   

19.
The effect of femoral component malrotation on patellar biomechanics   总被引:1,自引:0,他引:1  
Patellofemoral complications are among the important reasons for revision knee arthroplasty. Femoral component malposition has been implicated in patellofemoral maltracking, which is associated with anterior knee pain, subluxation, fracture, wear, and aseptic loosening. Rotating-platform mobile bearings compensate for malrotation between the tibial and femoral components and may, therefore, reduce any associated patellofemoral maltracking. To test this hypothesis, we developed a dynamic model of quadriceps-driven open-kinetic-chain extension in a knee implanted with arthroplasty components. The model was validated using tibiofemoral and patellofemoral kinematics and forces measured in cadaver knees. Knee kinematics and patellofemoral forces were measured after simulating malrotation (±3°) of the femoral component. Rotational alignment of the femoral component affected tibial rotation near full extension and tibial adduction at higher flexion angles. External rotation of the femoral component increased patellofemoral lateral tilt, lateral shift, and lateral shear forces. Up to 21° of bearing rotation relative to the tibia was noted in the rotating-bearing condition. However, the rotating bearing had minimal effect in reducing the patellofemoral maltracking or shear induced by femoral component rotation. The rotating platform does not appear to be forgiving of malalignment of the extensor mechanism resulting from femoral component malrotation. These results support the value of improving existing methodologies for accurate femoral component alignment in total knee arthroplasty.  相似文献   

20.
Stress shielding is a biomechanical phenomenon causing adaptive changes in bone strength and stiffness around metallic implants, which potentially lead to implant loosening. Accordingly, there is a need for standard, objective engineering measures of the “stress shielding” performances of an implant that can be employed in the process of computer-aided implant design. To provide and test such measures, we developed hierarchical computational models of adaptation of the trabecular microarchitecture at different sites in the proximal femur, in response to insertion of orthopaedic screws and in response to hypothetical reductions in hip joint and gluteal muscle forces. By identifying similar bone adaptation outcomes from the two scenarios, we were able to quantify the stress shielding caused by screws in terms of analogous hypothetical reductions in hip joint and gluteal muscle forces. Specifically, we developed planar lattice models of trabecular microstructures at five regions of interest (ROI) in the proximal femur. The homeostatic and abnormal loading conditions for the lattices were determined from a finite element model of the femur at the continuum scale and fed to an iterative algorithm simulating the adaptation of each lattice to these loads. When screws were inserted to the femur model, maximal simulated bone loss (17% decrease in apparent density, 10% decrease in thickness of trabeculae) was at the greater trochanter and this effect was equivalent to the effect of 50% reduction in gluteal force and normal hip joint force. We conclude that stress shielding performances can be quantified for different screw designs using model-predicted hypothetical musculoskeletal load fractions that would cause a similar pattern and extent of bone loss to that caused by the implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号