首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure.  相似文献   

2.
Tensile stiffness of articular cartilage is much greater than its compressive stiffness and plays an essential role even in compressive properties by increasing transient fluid pressures during physiological loading. Recent studies of nonlinear properties of articular cartilage in compression revealed several physiologically pertinent nonlinear behaviors, all of which required that cartilage tensile stiffness increase significantly with stretch. We therefore performed sequences of uniaxial tension tests on fresh bovine articular cartilage slices using a protocol that allowed several hours to attain equilibrium and measured longitudinal and transverse tissue strain. By testing bovine cartilage from different ages (6 months to 6 years) we found that equilibrium and transient tensile modulus increased significantly with maturation and age, from 0 to 15 MPa at equilibrium and from 10 to 28 MPa transiently. Our results indicate that cartilage stiffens with age in a manner similar to other highly hydrated connective tissues, possibly due to age-dependent content of enzymatic and nonenzymatic collagen cross links. The long relaxation period used in our tests (5-10 hours) was necessary in order to attain equilibrium and avoid a very significant overestimation of equilibrium modulus that occurs when much shorter times are used (15-30 minutes). We also found that equilibrium and transient tensile modulus increased nonlinearly when cartilage is stretched from 0 to 10% strain without any previous tare load. Although our results estimate a nonlinear increase in tensile stiffness with stretch that is an order of magnitude lower than that required to predict nonlinear properties in compression, they are in agreement with previous results from other uniaxial tension tests of collagenous materials. We therefore speculate that biaxial tensile moduli may be much higher and thereby more compatible with observed nonlinear compressive properties.  相似文献   

3.
Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p<0.05) by a factor of 4-5 from the top 0.1 mm (28+/-13 kPa, 141+/-10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p<0.001), and correlated with the modulus (both p<0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues.  相似文献   

4.
Cartilage is considered a biphasic material in which the solid is composed of proteoglycans and collagen. In biphasic tissue, the hydraulic pressure is believed to bear most of the load under higher strain rates and its dissipation due to fluid flow determines creep and relaxation behavior. In equilibrium, hydraulic pressure is zero and load bearing is transferred to the solid matrix. The viscoelasticity of the collagen network also contributes to its time-dependent behavior, and the osmotic pressure to load bearing in equilibrium. The aim of the present study was to determine the relative contributions of hydraulic pressure, viscoelastic collagen stress, solid matrix stiffness and osmotic pressure to load carriage in cartilage under transient and equilibrium conditions. Unconfined compression experiments were simulated using a fibril-reinforced poroviscoelastic model of articular cartilage, including water, fibrillar viscoelastic collagen and non-fibrillar charged glycosaminoglycans. The relative contributions of hydraulic and osmotic pressures and stresses in the fibrillar and non-fibrillar network were evaluated in the superficial, middle and deep zone of cartilage under five different strain rates and after relaxation. Initially upon loading, the hydraulic pressure carried most of the load in all three zones. The osmotic swelling pressure carried most of the equilibrium load. In the surface zone, where the fibers were loaded in tension, the collagen network carried 20 % of the load for all strain rates. The importance of these fibers was illustrated by artificially modifying the fiber architecture, which reduced the overall stiffness of cartilage in all conditions. In conclusion, although hydraulic pressure dominates the transient behavior during cartilage loading, due to its viscoelastic nature the superficial zone collagen fibers carry a substantial part of the load under transient conditions. This becomes increasingly important with higher strain rates. The interesting and striking new insight from this study suggests that under equilibrium conditions, the swelling pressure generated by the combination of proteoglycans and collagen reinforcement accounts cartilage stiffness for more than 90 % of the loads carried by articular cartilage. This finding is different from the common thought that load is transferred from fluid to solid and is carried by the aggregate modulus of the solid. Rather, it is transformed from hydraulic to osmotic swelling pressure. These results show the importance of considering both (viscoelastic) collagen fibers as well as swelling pressure in studies of the (transient) mechanical behavior of cartilage.  相似文献   

5.
Structure and properties of knee articular cartilage are adapted to stresses exposed on it during physiological activities. In this study, we describe site- and depth-dependence of the biomechanical properties of bovine knee articular cartilage. We also investigate the effects of tissue structure and composition on the biomechanical parameters as well as characterize experimentally and numerically the compression-tension nonlinearity of the cartilage matrix. In vitro mechano-optical measurements of articular cartilage in unconfined compression geometry are conducted to obtain material parameters, such as thickness, Young's and aggregate modulus or Poisson's ratio of the tissue. The experimental results revealed significant site- and depth-dependent variations in recorded parameters. After enzymatic modification of matrix collagen or proteoglycans our results show that collagen primarily controls the dynamic tissue response while proteoglycans affect more the static properties. Experimental measurements in compression and tension suggest a nonlinear compression-tension behavior of articular cartilage in the direction perpendicular to articular surface. Fibril reinforced poroelastic finite element model was used to capture the experimentally found compression-tension nonlinearity of articular cartilage.  相似文献   

6.
Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.  相似文献   

7.
The negatively charged proteoglycans (PG) provide compressive resistance to articular cartilage by means of their fixed charge density (FCD) and high osmotic pressure (πPG), and the collagen network (CN) provides the restraining forces to counterbalance πPG. Our objectives in this work were to: 1), account for collagen intrafibrillar water when transforming biochemical measurements into a FCD-πPG relationship; 2), compute πPG and CN contributions to the compressive behavior of full-thickness cartilage during bovine growth (fetal, calf, and adult) and human adult aging (young and old); and 3), predict the effect of depth from the articular surface on πPG in human aging. Extrafibrillar FCD (FCDEF) and πPG increased with bovine growth due to an increase in CN concentration, whereas PG concentration was steady. This maturation-related increase was amplified by compression. With normal human aging, FCDEF and πPG decreased. The πPG-values were close to equilibrium stress (σEQ) in all bovine and young human cartilage, but were only approximately half of σEQ in old human cartilage. Depth-related variations in the strain, FCDEF, πPG, and CN stress profiles in human cartilage suggested a functional deterioration of the superficial layer with aging. These results suggest the utility of the FCD-πPG relationship for elucidating the contribution of matrix macromolecules to the biomechanical properties of cartilage.  相似文献   

8.
Articular cartilage is an enduring tissue. For most individuals, articular cartilage facilitates a lifetime of pain-free ambulation, supporting millions of loading cycles from activities of daily living. Although early studies into osteoarthritis focused on the role of mechanical fatigue in articular cartilage degeneration, much is still unknown regarding its strength and endurance characteristics. The compressive strength of juvenile, bovine articular cartilage explants was determined to be loading rate-dependent, reaching a maximum strength of 29.5 ± 4.8 MPa at a strain rate of 0.10 %/sec. The fatigue and endurance properties of articular cartilage were characterized utilizing a material testing system, as well as a custom, validated instrument termed the two degrees-of-freedom endurance meter (endurometer). These instruments characterized fatigue in articular cartilage explants at loading levels ranging from 10 to 80 % strength (%S), up to 100,000 cycles. Cartilage explants displayed characteristics of fatigue – fatigue life increased as the loading magnitude decreased. All explants failed within 14,000 cycles at loading levels between 50 and 80 %S. At 10 and 20 %S, all explants endured 100,000 loading cycles. There was no significant difference in equilibrium compressive modulus between run-out explants and unloaded controls, although the pooled modulus increased in response to testing. Histological staining and biochemical assays revealed no material changes in collagen, sulfated glycosaminoglycan, or hydration content between unloaded controls and explants cyclically loaded to run-out. These results suggest articular cartilage may have a putative endurance limit of 20 %S (5.86 MPa), with implications for articular cartilage biomechanics and mechanobiology.  相似文献   

9.
Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.  相似文献   

10.
《The Journal of cell biology》1984,99(6):1960-1969
Chondrocytes isolated from bovine articular cartilage were plated at high density and grown in the presence or absence of ascorbate. Collagen and proteoglycans, the major matrix macromolecules synthesized by these cells, were isolated at times during the course of the culture period and characterized. In both control and ascorbate-treated cultures, type II collagen and cartilage proteoglycans accumulated in the cell-associated matrix. Control cells secreted proteoglycans and type II collagen into the medium, whereas with time in culture, ascorbate-treated cells secreted an increasing proportion of types I and III collagens into the medium. The ascorbate-treated cells did not incorporate type I collagen into the cell-associated matrix, but continued to accumulate type II collagen in this compartment. Upon removal of ascorbate, the cells ceased to synthesize type I collagen. Morphological examination of ascorbate-treated and control chondrocyte culture revealed that both collagen and proteoglycans were deposited into the extracellular matrix. The ascorbate-treated cells accumulated a more extensive matrix that was rich in collagen fibrils and ruthenium red-positive proteoglycans. This study demonstrated that although ascorbate facilitates the formation of an extracellular matrix in chondrocyte cultures, it can also cause a reversible alteration in the phenotypic expression of those cells in vitro.  相似文献   

11.
A microstructural model of cartilage was developed to investigate the relative contribution of tissue matrix components to its elastostatic properties. Cartilage was depicted as a tensed collagen lattice pressurized by the Donnan osmotic swelling pressure of proteoglycans. As a first step in modeling the collagen lattice, two-dimensional networks of tensed, elastic, interconnected cables were studied as conceptual models. The models were subjected to the boundary conditions of confined compression and stress-strain curves and elastic moduli were obtained as a function of a two-dimensional equivalent of swelling pressure. Model predictions were compared to equilibrium confined compression moduli of calf cartilage obtained at different bath concentrations ranging from 0.01 to 0.50 M NaCl. It was found that a triangular cable network provided the most consistent correspondence to the experimental data. The model showed that the cartilage collagen network remained tensed under large confined compression strains and could therefore support shear stress. The model also predicted that the elastic moduli increased with increasing swelling pressure in a manner qualitatively similar to experimental observations. Although the model did not preclude potential contributions of other tissue components and mechanisms, the consistency of model predictions with experimental observations suggests that the cartilage collagen network, prestressed by proteoglycan swelling pressure, plays an important role in supporting compression.  相似文献   

12.
Knee joints of one adult and three juvenile African elephants were dissected. The specific features of the articular cartilage with particular reference to matrix components were studied by light and electron microscopy and immunohistochemistry. The elephant knee joint cartilage contains an unusually low concentration of proteoglycans resulting in rather eosinophilic staining properties of the matrix. The very thick collagen fibers of the cartilage possibly represent collagen I. Except for the different thickness of cartilage at the weight-bearing surfaces of femur (approximately 6.7 mm) and tibia (approximately 11.2 mm) in juvenile elephants, light and electron microscopy did not reveal distinct topographical differences in cartilage structure, perhaps because of the high congruency of the articulating surfaces and resulting uniform load distribution in the knee. The number of cell profiles per section area of both femoral (approximately 950 cell profiles/mm(2)) and tibial cartilage (approximately 898 cell profiles/mm(2)) was low, indicating excessive matrix production by the chondrocytes during cartilage development. These unique properties could be a result of the enormous compressive load resting on the elephant knee. Maintenance of the equilibrium between biological function and resistance to compression seems to be crucial in the elephant knee joint cartilage. Any disturbance that interferes with this equilibrium appears to lead to arthrotic alterations, as particularly seen in captive elephants.  相似文献   

13.
Mapping the depth dependence of shear properties in articular cartilage   总被引:1,自引:1,他引:0  
Determining the depth dependence of the shear properties of articular cartilage is essential for understanding the structure-function relation in this tissue. Here, we measured spatial variations in the shear modulus G of bovine articular cartilage using a novel technique that combines shear testing, confocal imaging and force measurement. We found that G varied by up to two orders of magnitude across a single sample, exhibited a global minimum 50-250 microm below the articular surface in a region just below the superficial zone and was roughly constant at depths > 1000 microm (the "plateau region"). For plateau strains gamma(plateau) approximately 0.75% and overall compressive strains epsilon approximately 5%, G(min) and G(plateau) were approximately 70 and approximately 650 kPa, respectively. In addition, we found that the shear modulus profile depended strongly on the applied shear and axial strains. The greatest change in G occurred at the global minimum where the tissue was highly nonlinear, stiffening under increased shear strain, and weakening under increased compressive strain. Our results can be explained through a simple thought model describing the observed nonlinear behavior in terms of localized buckling of collagen fibers and suggest that compression may decrease the vulnerability of articular cartilage to shear-induced damage by lowering the effective strain on individual collagen fibrils.  相似文献   

14.
The extracellular matrix of articular cartilage modulates the mechanical signals sensed by the chondrocytes. In the present study, a finite element model (FEM) of the chondrocyte and its microenvironment was reconstructed using the information from fourier transform infrared imaging spectroscopy. This environment consisted of pericellular, territorial (mainly proteoglycans), and inter-territorial (mainly collagen) matrices. The chondrocyte, pericellular, and territorial matrix were assumedto be mechanically isotropic and poroelastic, whereas the inter-territorial matrix, due to its high collagen content, was assumed to be transversely isotropic and poroelastic. Under instantaneous strain-controlled compression, the FEM indicated that the fluid pressure within the chondrocyte increased nonlinearly as a function of the in-plane Young’s modulus of the collagen network. Under instantaneous force-controlled compression, the chondrocyte experienced the highest fluid pressure when the in-plane Young’s modulus of the collagen network was ~4 MPa. Based on the present results, the mechanical characteristics of the collagen network of articular cartilage can modify fluid flow and stresses in chondrocytes. Therefore, the integrity of the collagen network may be an important determinant in cell stimulation and in the control of the matrix maintenance.  相似文献   

15.
Dermatan and chondroitin sulfate glycosaminoglycans (GAGs) comprise over 90% of the GAG content in ligament. Studies of their mechanical contribution to soft tissues have reported conflicting results. Measuring the transient compressive response and biphasic material parameters of the tissue may elucidate the contributions of GAGs to the viscoelastic response to deformation. The hypotheses of the current study were that digestion of sulfated GAGs would decrease compressive stress and aggregate modulus while increasing the permeability of porcine medial collateral ligament (MCL). Confined compression stress relaxation experiments were carried out on porcine MCL and tissue treated with chondroitinase ABC (ChABC). Results were fit to a biphasic constitutive model to derive permeability and aggregate modulus. Bovine articular cartilage was used as a benchmark tissue to verify that the apparatus provided reliable results. GAG digestion removed up to 88% of sulfated GAGs from the ligament. Removal of sulfated GAGs increased the permeability of porcine MCL nearly 6-fold versus control tissues. Peak stress decreased significantly. Bovine articular cartilage exhibited the typical reduction of GAG content and resultant decreases in stress and modulus and increases in permeability with ChABC digestion. Given the relatively small amount of GAG in ligament (<1% of tissue dry weight) and the significant change in peak stress and permeability upon removal of GAGs, sulfated GAGs may play a significant role in maintaining the apposition of collagen fibrils in the transverse direction, thus supporting dynamic compressive loads experienced by the ligament during complex joint motion.  相似文献   

16.
Classically, single-phase isotropic elastic (IE) model has been used for in situ or in vivo indentation analysis of articular cartilage. The model significantly simplifies cartilage structure and properties. In this study, we apply a fibril-reinforced poroelastic (FRPE) model for indentation to extract more detailed information on cartilage properties. Specifically, we compare the information from short-term (instantaneous) and long-term (equilibrium) indentations, as described here by IE and FRPE models. Femoral and tibial cartilage from rabbit (age 0–18 months) knees (n=14) were tested using a plane-ended indenter (diameter=0.544 mm). Stepwise creep tests were conducted to equilibrium. Single-phase IE solution for indentation was used to derive instantaneous modulus and equilibrium (Young's) modulus for the samples. The classical and modified Hayes’ solutions were used to derive values for the indentation moduli. In the FRPE model, the indentation behavior was sample-specifically described with three material parameters, i.e. fibril network modulus, non-fibrillar matrix modulus and permeability. The instantaneous and fibril network modulus, and the equilibrium Young's modulus and non-fibrillar matrix modulus showed significant (p<0.01) linear correlations of R2=0.516 and 0.940, respectively (Hayes’ solution) and R2=0.531 and 0.960, respectively (the modified Hayes’ solution). No significant correlations were found between the non-fibrillar matrix modulus and instantaneous moduli or between the fibril network modulus and the equilibrium moduli. These results indicate that the instantaneous indentation modulus (IE model) provides information on tensile stiffness of collagen fibrils in cartilage while the equilibrium modulus (IE model) is a significant measure for stiffness of PG matrix. Thereby, this study highlights the feasibility of a simple indentation analysis.  相似文献   

17.
Increased amino acid supplementation (0.5 x, 1.0 x, and 5.0 x recommended concentrations or additional proline) was hypothesized to increase the collagen content in engineered cartilage. No significant differences were found between groups in matrix content or dynamic modulus. Control constructs possessed the highest compressive Young's modulus on day 42. On day 42, compared to controls, decreased type II collagen was found with 0.5 x, 1.0 x, and 5.0 x supplementation and significantly increased DNA content found in 1.0 x and 5.0 x. No effects were observed on these measures with added proline. These results lead us to reject our hypothesis and indicate that the low collagen synthesis in engineered cartilage is not due to a limited supply of amino acids in media but may require a further stimulatory signal. The results of this study also highlight the impact that culture environment can play on the development of engineered cartilage.  相似文献   

18.
Very limited information is currently available on the constitutive modeling of the tensile response of articular cartilage and its dynamic modulus at various loading frequencies. The objectives of this study were to (1) formulate and experimentally validate a constitutive model for the intrinsic viscoelasticity of cartilage in tension, (2) confirm the hypothesis that energy dissipation in tension is less than in compression at various loading frequencies, and (3) test the hypothesis that the dynamic modulus of cartilage in unconfined compression is dependent upon the dynamic tensile modulus. Experiment 1: Immature bovine articular cartilage samples were tested in tensile stress relaxation and cyclical loading. A proposed reduced relaxation function was fitted to the stress-relaxation response and the resulting material coefficients were used to predict the response to cyclical loading. Adjoining tissue samples were tested in unconfined compression stress relaxation and cyclical loading. Experiment 2: Tensile stress relaxation experiments were performed at varying strains to explore the strain-dependence of the viscoelastic response. The proposed relaxation function successfully fit the experimental tensile stress-relaxation response, with R2 = 0.970+/-0.019 at 1% strain and R2 = 0.992+/-0.007 at 2% strain. The predicted cyclical response agreed well with experimental measurements, particularly for the dynamic modulus at various frequencies. The relaxation function, measured from 2% to 10% strain, was found to be strain dependent, indicating that cartilage is nonlinearly viscoelastic in tension. Under dynamic loading, the tensile modulus at 10 Hz was approximately 2.3 times the value of the equilibrium modulus. In contrast, the dynamic stiffening ratio in unconfined compression was approximately 24. The energy dissipation in tension was found to be significantly smaller than in compression (dynamic phase angle of 16.7+/-7.4 deg versus 53.5+/-12.8 deg at 10(-3) Hz). A very strong linear correlation was observed between the dynamic tensile and dynamic compressive moduli at various frequencies (R2 = 0.908+/-0.100). The tensile response of cartilage is nonlinearly viscoelastic, with the relaxation response varying with strain. A proposed constitutive relation for the tensile response was successfully validated. The frequency response of the tensile modulus of cartilage was reported for the first time. Results emphasize that fluid-flow dependent viscoelasticity dominates the compressive response of cartilage, whereas intrinsic solid matrix viscoelasticity dominates the tensile response. Yet the dynamic compressive modulus of cartilage is critically dependent upon elevated values of the dynamic tensile modulus.  相似文献   

19.
The biochemical measure of success in assisted cartilage repair is normally judged by repair tissue cell density, mRNA and protein expression, and accumulation of extracellular matrix molecules. Existing methods to solubilize cartilage matrix proteoglycans and cellular DNA for quantification, such as papain digestion, often destroy one or more species of the above-named parameters, in order to render others measurable. We have therefore developed a methodology to measure specific levels of mRNA, protein, DNA, glycosaminoglycan, and collagen content on single pulverized 10-mg samples of cartilage, or tissue-engineered cartilage, using successive extractions in concentrated guanidine hydrochloride (GuCl) and guanidine thiocyanate (GITC) solutions. Conditions were developed to solubilize most cellular proteins, DNA, proteoglycans, and some matrix proteins with an initial GuCl extraction step. A subsequent extraction with GITC was essential to solubilize the majority of the cellular RNA. Guanidine-insoluble material was rendered soluble by papain digestion, to enable quantification of collagen, residual glycosaminoglycan, and residual unextracted DNA in individual samples. In general, total collagen, GAG, and DNA content measured in multivalent-extracted samples was similar to that obtained with samples digested directly with papain. Moreover, we were able to reliably detect, in these same multivalent extracts, expressed mRNA as well as specific cellular and extracellular matrix proteins. This multivalent assay could be applied to a variety of cells cultured in biopolymers and to tissues from which biochemical components may be otherwise difficult to extract.  相似文献   

20.
The intercellular matrices of bovine nasal cartilage, chick embryo perichordal cartilage, and chick embryo mesenchymal cells cultured in vitro have been examined by electron microscopy after staining them with Alcian Blue in salt solutions according to Scott & Dorling (1965). Matrix granules, which are typical components of cartilage at the ultrastructural level, are not visible after Alcian Blue staining and are replaced by alcianophilic rod-like particles, varying in length and width. With tissue cultures, Alcian Blue stains 40-120 A thick filaments which display an orthogonal and longitudinal relationship to collagen fibrils. We assume that cartilage matrix granules represent linear proteoglycans that are coiled as a consequence of the usual glutaraldehyde-osmium fixation. It is thought that Alcian Blue, on the other hand, contributes to the stabilization of the proteoglycans in their original structural arrangement. This stabilizing property presumably also results in the sharp visualization of fine filaments in the tissue culture matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号