首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

2.
Coastal zones act as a sink for riverine and atmospheric nitrogen inputs and thereby buffer the open ocean from the effects of anthropogenic activity. Recently, microbial activity in sandy permeable sediments has been identified as a dominant source of N-loss in coastal zones, namely through denitrification. Some of the highest coastal denitrification rates measured so far occur within the intertidal permeable sediments of the eutrophied Wadden Sea. Still, denitrification alone can often account for only half of the substantial nitrate (NO3 ) consumption. Therefore, to investigate alternative NO3 sinks such as dissimilatory nitrate reduction to ammonium (DNRA), intracellular nitrate storage by eukaryotes and isotope equilibration effects we carried out 15NO3 amendment experiments. By considering all of these sinks in combination, we could quantify the fate of the 15NO3 added to the sediment. Denitrification was the dominant nitrate sink (50–75%), while DNRA, which recycles N to the environment accounted for 10–20% of NO3 consumption. Intriguingly, we also observed that between 20 and 40% of 15NO3 added to the incubations entered an intracellular pool of NO3 and was subsequently respired when nitrate became limiting. Eukaryotes were responsible for a large proportion of intracellular nitrate storage, and it could be shown through inhibition experiments that at least a third of the stored nitrate was subsequently also respired by eukaryotes. The environmental significance of the intracellular nitrate pool was confirmed by in situ measurements which revealed that intracellular storage can accumulate nitrate at concentrations six fold higher than the surrounding porewater. This intracellular pool is so far not considered when modeling N-loss from intertidal permeable sediments; however it can act as a reservoir for nitrate during low tide. Consequently, nitrate respiration supported by intracellular nitrate storage can add an additional 20% to previous nitrate reduction estimates in intertidal sediments, further increasing their contribution to N-loss.  相似文献   

3.
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2 and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.  相似文献   

4.
对全球大洋氮循环的研究发现,大洋输入和输出的氮存在严重的不平衡,所固定的氮中有相当一部分被还原为N2或N2O从大洋中流失,而海洋最小含氧带(OMZ)被认为是发生氮流失的最主要区域,通过反硝化作用和厌氧氨氧化作用,固定氮在OMZ海区内损失量可达40~450 Tg·a-1.对不同海区OMZ内固定氮损失的两种主要作用总结发现,异养反硝化作用在热带太平洋东部、阿拉伯海的OMZ内以及海洋沉积物内占有显著优势,在智利、秘鲁沿岸海域及阿拉伯海域也已发现自养反硝化作用的存在;而在黑海、非洲西南部的本格拉上升流、智利北部沿岸等地,厌氧氨氧化作用强烈,且其在陆架区的作用强度和面积要大于大洋区.OMZ氮的流失除受氮流失过程自身影响外,固氮作用、硝化作用、硝酸盐异化还原作用等都可能对OMZ海区内氮收支不平衡造成影响.其中固氮作用的影响最不能忽视,其在全球OMZ内固定的氮的总量可达15~40 Tg·a-1,是对OMZ氮流失量的重要补充.区分反硝化作用和厌氧氨氧化作用对OMZ氮流失的相对贡献,明确氮流失的另一产物N2O的形成机制和定量评估方法是当前OMZ氮流失研究中存在的最主要问题.本文针对存在问题提出了相应的研究设想,以期为海洋最小含氧带的研究提供参考.  相似文献   

5.
The regulatory roles of temperature, eutrophication and oxygen availability on benthic nitrogen (N) cycling and the stoichiometry of regenerated nitrogen and phosphorus (P) were explored along a Baltic Sea estuary affected by treated sewage discharge. Rates of sediment denitrification, anammox, dissimilatory nitrate reduction to ammonium (DNRA), nutrient exchange, oxygen (O2) uptake and penetration were measured seasonally. Sediments not affected by the nutrient plume released by the sewage treatment plant (STP) showed a strong seasonality in rates of O2 uptake and coupled nitrification–denitrification, with anammox never accounting for more than 20 % of the total dinitrogen (N2) production. N cycling in sediments close to the STP was highly dependent on oxygen availability, which masked temperature-related effects. These sediments switched from low N loss and high ammonium (NH4 +) efflux under hypoxic conditions in the fall, to a major N loss system in the winter when the sediment surface was oxidized. In the fall DNRA outcompeted denitrification as the main nitrate (NO3 ?) reduction pathway, resulting in N recycling and potential spreading of eutrophication. A comparison with historical records of nutrient discharge and denitrification indicated that the total N loss in the estuary has been tightly coupled to the total amount of nutrient discharge from the STP. Changes in dissolved inorganic nitrogen (DIN) released from the STP agreed well with variations in sedimentary N2 removal. This indicates that denitrification and anammox efficiently counterbalance N loading in the estuary across the range of historical and present-day anthropogenic nutrient discharge. Overall low N/P ratios of the regenerated nutrient fluxes impose strong N limitation for the pelagic system and generate a high potential for nuisance cyanobacterial blooms.  相似文献   

6.
Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels. To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ transition zone at oxygen concentrations of ca. 5 μ, coincident with peaks in both thaumarchaeotal 16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of anammox-specific IPLs peaked within the core of the OMZ at 600 m, where oxygen reached the lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a unique depth distribution of abundant AOA and anammox bacteria and the segregation of their respective niches by >400 m, suggesting no direct coupling of their metabolisms at the time and site of sampling in the Arabian Sea OMZ.  相似文献   

7.
8.
The anaerobic oxidation of ammonium (anammox) contributes significantly to the global loss of fixed nitrogen and is carried out by a deep branching monophyletic group of bacteria within the phylum Planctomycetes. Various studies have implicated anammox to be the most important process responsible for the nitrogen loss in the marine oxygen minimum zones (OMZs) with a low diversity of marine anammox bacteria. This comprehensive study investigated the anammox bacteria in the suboxic zone of the Black Sea and in three major OMZs (off Namibia, Peru and in the Arabian Sea). The diversity and population composition of anammox bacteria were investigated by both, the 16S rRNA gene sequences and the 16S-23S rRNA internal transcribed spacer (ITS). Our results showed that the anammox bacterial sequences of the investigated samples were all closely related to the Candidatus Scalindua genus. However, a greater microdiversity of marine anammox bacteria than previously assumed was observed. Both phylogenetic markers supported the classification of all sequences in two distinct anammox bacterial phylotypes: Candidatus Scalindua clades 1 and 2. Scalindua 1 could be further divided into four distinct clusters, all comprised of sequences from either the Namibian or the Peruvian OMZ. Scalindua 2 consisted of sequences from the Arabian Sea and the Peruvian OMZ and included one previously published 16S rRNA gene sequence from Lake Tanganyika and one from South China Sea sediment (97.9-99.4% sequence identity). This cluster showed only 相似文献   

9.
The effects of three metabolic inhibitors (acetylene, methanol, and allylthiourea [ATU]) on the pathways of N2 production were investigated by using short anoxic incubations of marine sediment with a 15N isotope technique. Acetylene inhibited ammonium oxidation through the anammox pathway as the oxidation rate decreased exponentially with increasing acetylene concentration; the rate decay constant was 0.10 ± 0.02 μM−1, and there was 95% inhibition at ~30 μM. Nitrous oxide reduction, the final step of denitrification, was not sensitive to acetylene concentrations below 10 μM. However, nitrous oxide reduction was inhibited by higher concentrations, and the sensitivity was approximately one-half the sensitivity of anammox (decay constant, 0.049 ± 0.004 μM−1; 95% inhibition at ~70 μM). Methanol specifically inhibited anammox with a decay constant of 0.79 ± 0.12 mM−1, and thus 3 to 4 mM methanol was required for nearly complete inhibition. This level of methanol stimulated denitrification by ~50%. ATU did not have marked effects on the rates of anammox and denitrification. The profile of inhibitor effects on anammox agreed with the results of studies of the process in wastewater bioreactors, which confirmed the similarity between the anammox bacteria in bioreactors and natural environments. Acetylene and methanol can be used to separate anammox and denitrification, but the effects of these compounds on nitrification limits their use in studies of these processes in systems where nitrification is an important source of nitrate. The observed differential effects of acetylene and methanol on anammox and denitrification support our current understanding of the two main pathways of N2 production in marine sediments and the use of 15N isotope methods for their quantification.  相似文献   

10.
In the global nitrogen cycle, bacterial denitrification is recognized as the only quantitatively important process that converts fixed nitrogen to atmospheric nitrogen gas, N2, thereby influencing many aspects of ecosystem function and global biogeochemistry. However, we have found that a process novel to the marine nitrogen cycle, anaerobic oxidation of ammonium coupled to nitrate reduction, contributes substantially to N2 production in marine sediments. Incubations with 15N-labeled nitrate or ammonium demonstrated that during this process, N2 is formed through one-to-one pairing of nitrogen from nitrate and ammonium, which clearly separates the process from denitrification. Nitrite, which accumulated transiently, was likely the oxidant for ammonium, and the process is thus similar to the anammox process known from wastewater bioreactors. Anaerobic ammonium oxidation accounted for 24 and 67% of the total N2 production at two typical continental shelf sites, whereas it was detectable but insignificant relative to denitrification in a eutrophic coastal bay. However, rates of anaerobic ammonium oxidation were higher in the coastal sediment than at the deepest site and the variability in the relative contribution to N2 production between sites was related to large differences in rates of denitrification. Thus, the relative importance of anaerobic ammonium oxidation and denitrification in N2 production appears to be regulated by the availability of their reduced substrates. By shunting nitrogen directly from ammonium to N2, anaerobic ammonium oxidation promotes the removal of fixed nitrogen in the oceans. The process can explain ammonium deficiencies in anoxic waters and sediments, and it may contribute significantly to oceanic nitrogen budgets.  相似文献   

11.
Intensive agriculture leads to increased nitrogen fluxes (mostly as nitrate, NO3 ?) to aquatic ecosystems, which in turn creates ecological problems, including eutrophication and associated harmful algal blooms. These problems have focused scientific attention on understanding the controls on nitrate reduction processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Our objective was to determine the effects of nutrient-tolerant bioturbating invertebrates (tubificid oligochaetes) on nitrogen cycling processes, specifically coupled nitrification–denitrification, net denitrification, DNRA, and biogeochemical fluxes (O2, NO3 ?, NH4 +, CO2, N2O, and CH4) in freshwater sediments. A mesocosm experiment determined how tubificid density and increasing NO3 ? concentrations (using N15 isotope tracing) interact to affect N cycling processes. At the lowest NO3 ? concentration and in the absence of bioturbation, the relative importance of denitrification to DNRA was similar (i.e., 49.6 and 50.4 ± 8.1 %, respectively). Increasing NO3 ? concentrations in the control cores (without fauna) stimulated denitrification, but did not enhance DNRA, which significantly altered the relative importance of denitrification compared to DNRA (94.6 vs. 5.4 ± 0.9 %, respectively). The presence of tubificid oligochaetes enhanced O2, NO3 ?, NH4 + fluxes, greenhouse gas production, and N cycling processes. The relative importance of denitrification to DNRA shifted towards favoring denitrification with both the increase in NO3 ? concentrations and the increase of bioturbation activity. Our study highlights that understanding the interactions between nutrient-tolerant bioturbating species and nitrate contamination is important for determining the nitrogen removal capacity of eutrophic freshwater ecosystems.  相似文献   

12.
We performed a suite of 15N incubations (15NO2, 15NO3 and 15NH4+) with and without the organic-nitrogen (N) compound allylthiourea (ATU), in the suboxic waters of the Arabian Sea. Production of 29N2 in control (-ATU) incubations with either 15NH4++14NO2, or their analogues, 15NO2+14NH4+, though small, confirmed the presence of anammox. In contrast, when we added ATU, along with 15NO2 and 14NH4+, there was a much greater production of 29N2, with 92% of the 15N-label being recovered as 29N2 on average. Such stimulated production of 29N2 could not be due to anammox, as the addition of ATU, along with 15NH4++14NO2, only produced 29N2 equivalent to that in the controls. The ratios of 29N2 to 30N2 produced also precluded stimulation of denitrification. We present this as evidence for a hitherto uncharacterised metabolism potentially capable of oxidising organic-N (e.g. NH2 groups) directly to N2 gas at the expense of NO2.  相似文献   

13.
硝态氮异化还原机制及其主导因素研究进展   总被引:12,自引:0,他引:12  
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。  相似文献   

14.
Dissimilatory NO3 reduction in sediments is often measured in bulk incubations that destroy in situ gradients of controlling factors such as sulfide and oxygen. Additionally, the use of unnaturally high NO3 concentrations yields potential rather than actual activities of dissimilatory NO3 reduction. We developed a technique to determine the vertical distribution of the net rates of dissimilatory nitrate reduction to ammonium (DNRA) with minimal physical disturbance in intact sediment cores at millimeter-level resolution. This allows DNRA activity to be directly linked to the microenvironmental conditions in the layer of NO3 consumption. The water column of the sediment core is amended with 15NO3 at the in situ 14NO3 concentration. A gel probe is deployed in the sediment and is retrieved after complete diffusive equilibration between the gel and the sediment pore water. The gel is then sliced and the NH4+ dissolved in the gel slices is chemically converted by hypobromite to N2 in reaction vials. The isotopic composition of N2 is determined by mass spectrometry. We used the combined gel probe and isotopic labeling technique with freshwater and marine sediment cores and with sterile quartz sand with artificial gradients of 15NH4+. The results were compared to the NH4+ microsensor profiles measured in freshwater sediment and quartz sand and to the N2O microsensor profiles measured in acetylene-amended sediments to trace denitrification.Nitrate accounts for the eutrophication of many human-affected aquatic ecosystems (19, 21). Sediment bacteria may mitigate NO3 pollution by denitrification and anaerobic ammonium oxidation (anammox), which produce N2 (13, 18). However, inorganic nitrogen is retained in aquatic ecosystems when sediment bacteria reduce NO3 to NH4+ by dissimilatory nitrate reduction to ammonium (DNRA) (5, 12, 16, 39). Hence, DNRA contributes to rather than counteracts eutrophication (23). DNRA may be the dominant pathway of dissimilatory NO3 reduction in sediments that are rich in electron donors, such as labile organic carbon and sulfide (4, 8, 17, 38, 55). High rates of DNRA are thus found in sediments affected by coastal aquaculture (8, 36) and settling algal blooms (16).DNRA, denitrification, and the chemical factors that control the partitioning between them (e.g., sulfide) should ideally be investigated in undisturbed sediments. The redox stratification of sediments involves vertical concentration gradients of pore water solutes. These gradients are often very steep, and their measurement requires high-resolution techniques, such as microsensors (26, 42) and gel probes (9, 54). If, for instance, the influence of sulfide on DNRA and denitrification is to be investigated, one wants to know exactly the sulfide concentration in the layers of DNRA and denitrification activity, as well as the flux of sulfide into these layers. This information can easily be obtained using H2S and pH microsensors (22, 43). It is less trivial to determine the vertical distribution of DNRA and denitrification activity in undisturbed sediments. Denitrification activity can be traced using a combination of the acetylene inhibition technique (51) and N2O microsensors (1). Acetylene inhibits the last step of denitrification, and therefore, N2O accumulates in the layer of denitrification activity (44). This method underestimates the denitrification activity in sediments with high rates of coupled nitrification-denitrification because acetylene also inhibits nitrification (50).The vertical distribution of DNRA activity in undisturbed sediment has, to the best of our knowledge, never been determined; thus, the microenvironmental conditions in the layer of DNRA activity remain unknown. Until now, the influence of chemical factors on DNRA and denitrification in sediments has been assessed by slurry incubations (4, 12, 30), by flux measurements with sealed sediment cores (7, 47) or flowthrough sediment cores (16, 27, 37), and in one case, in reconstituted sediment cores sliced at centimeter-level resolution (39). Here, we present a new method, the combined gel probe and isotope labeling technique, to determine the vertical distribution of the net rates of DNRA in sediments. The sediments remain largely undisturbed and the NO3 amendments are within the range of in situ concentrations. The DNRA measurements can be related to the microprofiles of potential influencing factors measured in close vicinity of the gel probe. This allows DNRA activity to be directly linked with the microenvironmental conditions in the sediment.  相似文献   

15.
Anammox and denitrification mediated by bacteria are known to be the major microbial processes converting fixed N to N2 gas in various ecosystems. Codenitrification and denitrification by fungi are additional pathways producing N2 in soils. However, fungal codenitrification and denitrification have not been well investigated in agricultural soils. To evaluate bacterial and fungal processes contributing to N2 production, molecular and 15N isotope analyses were conducted with soil samples collected at six different agricultural fields in the United States. Denitrifying and anammox bacterial abundances were measured based on quantitative PCR (qPCR) of nitrous oxide reductase (nosZ) and hydrazine oxidase (hzo) genes, respectively, while the internal transcribed spacer (ITS) of Fusarium oxysporum was quantified to estimate the abundance of codenitrifying and denitrifying fungi. 15N tracer incubation experiments with 15NO3 or 15NH4+ addition were conducted to measure the N2 production rates from anammox, denitrification, and codenitrification. Soil incubation experiments with antibiotic treatments were also used to differentiate between fungal and bacterial N2 production rates in soil samples. Denitrifying bacteria were found to be the most abundant, followed by F. oxysporum based on the qPCR assays. The potential denitrification rates by bacteria and fungi ranged from 4.118 to 42.121 nmol N2-N g−1 day−1, while the combined potential rates of anammox and codenitrification ranged from 2.796 to 147.711 nmol N2-N g−1 day−1. Soil incubation experiments with antibiotics indicated that fungal codenitrification was the primary process contributing to N2 production in the North Carolina soil. This study clearly demonstrates the importance of fungal processes in the agricultural N cycle.  相似文献   

16.
Marine oxygen minimum zones (OMZs) are characterized by the presence of subsurface suboxic or anoxic waters where diverse microbial processes are responsible for the removal of fixed nitrogen. OMZs have expanded over past decades and are expected to continue expanding in response to the changing climate. The implications for marine biogeochemistry, particularly nitrogen cycling, are uncertain. Cell membrane lipids (biomarkers), such as bacterial bacteriohopanepolyols (BHPs) and their degradation products (hopanoids), have distinctive structural attributes that convey information about their biological sources. Since the discovery of fossil hopanoids in ancient sediments, the study of BHPs has been of great biogeochemical interest due to their potential to serve as proxies for bacteria in the geological record. A stereoisomer of bacteriohopanetetrol (BHT), BHT II, has been previously identified in OMZ waters and has as been unequivocally identified in culture enrichments of anammox bacteria, a key group contributing to nitrogen loss in marine OMZs. We tested BHT II as a proxy for suboxia/anoxia and anammox bacteria in suspended organic matter across OMZ waters of the Humboldt Current System off northern Chile, as well as in surface and deeply buried sediments (125–150 ky). The BHT II ratio (BHT II/total BHT) increases as oxygen content decreases through the water column, consistent with previous results from Perú, the Cariaco Basin and the Arabian Sea, and in line with microbiological evidence indicating intense anammox activity in the Chilean OMZ. Notably, BHT II is transported from the water column to surface sediments, and preserved in deeply buried sediments, where the BHT II ratio correlates with changes in δ15N sediment values during glacial–interglacial transitions. This study suggests that BHT II offers a proxy for past changes in the relative importance of anammox, and fluctuations in nitrogen cycling in response to ocean redox changes through the geological record.  相似文献   

17.
Environmental anaerobic ammonium oxidation (anammox) was demonstrated for the first time in 2002, using 15N labeling, in homogenized sediment from the Skagerrak, where it accounted for up to 67% of N2 production. We returned to some of these original sites in 2010 to make measurements of nitrogen and carbon cycling under conditions more representative of those in situ, quantifying anammox and denitrification, together with oxygen penetration and consumption, in intact sediment cores. Overall, oxygen consumption and N2 production decayed with water depth, as expected, but the drop in N2 production was relatively more pronounced. Whereas we confirmed the dominance of N2 production by anammox (72% and 77%) at the two deepest sites (∼700 m of water), anammox was conspicuously absent from two shallower sites (∼200 m and 400 m). At the shallower sites, we could measure no anammox activity with either intact or homogeneous sediment, and quantitative PCR (16S rRNA) gave a negligible abundance of anammox bacteria in the anoxic layers. Such an absence of anammox, especially at one locale where it was originally demonstrated, is hard to reconcile. Despite the dominance of anammox at the deepest sites, anammox activity could not make up for the drop in denitrification, and assuming Redfield ratios for the organic matter being mineralized, the estimated retention of fixed N actually increased to 90% to 97% of that mineralized, whereas it was 80% to 86% at the shallower sites.  相似文献   

18.
19.
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.  相似文献   

20.
The potential effect of sustained hypoxia (up to 70 days) on the production of N2 gas through denitrification and anammox, as well as sediment–water exchange of nitrite, nitrate and ammonia, oxygen consumption and penetration, were measured in mesocosms using sediment collected from the southern North Sea (north of Dogger Bank). As expected, both the penetration of oxygen into, and consumption of oxygen by, the sediment decreased by 42 and 46 %, respectively, once hypoxia was established. Importantly, the oxygen regime did not change significantly (P > 0.05) during the experiment, suggesting that organic carbon was not depleted. During the first 10 days, the exchange of NO3 ?, NO2 ? and NH4 + between the sediment and water was erratic but once a steady state was established the sediment acted as either a sink for fixed nitrogen under hypoxia or as a source in the controls. Over the course of the mesocosm experiment the rate of both anammox and denitrification increased, with anammox increasing disproportionately under hypoxia relative to the controls, whereas the rate of increase in denitrification was the same for both. Under sustained hypoxia the production of N2 gas increased by 72 % relative to the controls, with this increase in N2 production remaining constant regardless of the duration of hypoxia. Longer periods of stratification and oxygen depletion are predicted to occur more regularly in the bottom waters of shallow coastal seas as one manifestation of climate change. Under sustained hypoxia the potential for nitrogen removal by the production of N2 gas in this region of the southern North Sea was estimated to increase from 2.1 kt N 150 days?1 to 3.6 kt 150 days?1, while the efflux of dissolved inorganic nitrogen ceased altogether; both of which could down regulate the productivity of this region as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号