首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to characterize the electromyographic (EMG) profile of tibialis posterior during barefoot walking in order to establish a reference database for neutral foot posture. Fifteen participants had their foot posture screened using the six-item Foot Posture Index. Bipolar intramuscular electrodes were inserted into tibialis posterior and peroneus longus utilizing ultrasound guidance. Surface electrodes were placed over medial gastrocnemius, peroneus brevis and tibialis anterior. EMG and footswitch gait characteristics were recorded whilst participants completed 10 barefoot walking trials. Individual and grand ensemble averages were used to characterize the intensity profiles for each muscle. Results indicated that for most of the participants, tibialis posterior displayed two bursts of EMG activity, with the first burst during the initial contact phase and the second burst during midstance. However, there was significant variability between participants. The grand ensemble average for tibialis posterior was comparable to peroneus longus which displayed similar temporal and intensity characteristics. It is suggested that this may reflect a synergistic relationship between these muscles during stance phase, although this was not consistent for all participants. Further research is required to determine if this relationship is altered in abnormal foot posture and whether it is clinically important. In conclusion, the EMG profile of tibialis posterior during the gait cycle appeared to be highly variable among participants. However, the authors believe that EMG findings from the participants with neutral foot posture in this study may be used for comparison to EMG patterns in people with abnormal foot posture and individuals affected by musculoskeletal disease.  相似文献   

2.
The purpose of this study was to compare the effects of a standard flexible shoe and a stability running shoe on lower limb muscle activity during walking. Twenty-eight young asymptomatic adults with flat-arched feet were recruited. While walking, electromyographic (EMG) activity was recorded from tibialis posterior and peroneus longus via intramuscular electrodes; and from tibialis anterior and medial gastrocnemius via surface electrodes. Three experimental conditions were assessed: (i) barefoot, (ii) a standard flexible shoe, (iii) a stability running shoe. Results showed significant differences for the peak amplitude and the time of peak amplitude for tibialis anterior, peroneus longus and medial gastrocnemius when comparing the three experimental conditions (p < 0.05). Significant differences were detected primarily between the barefoot and shoe conditions and with relatively small effect sizes for peroneus longus, tibialis anterior and medial gastrocnemius. Few significant differences were found between the two shoe styles. We discuss how these changes are most likely associated with the shoe upper bracing the foot, the shape of the shoe outer-sole and weight of the shoes. Further research is needed to investigate differences between these shoe styles when participants walk for longer distances (i.e. over 1000 m) and following fatigue.  相似文献   

3.
This study compared patterns of leg muscle recruitment and coactivation, and the relationship between muscle recruitment, coactivation and cadence, in novice and highly trained cyclists. Electromyographic (EMG) activity of tibialis anterior (TA), tibialis posterior (TP), peroneus longus (PL), gastrocnemius lateralis (GL) and soleus (SOL) was recorded using intramuscular fine-wire electrodes. Four experimental conditions of varying cadence were investigated. Differences were evident between novice and highly trained cyclists in the recruitment of all muscles. Novice cyclists were characterized by greater individual variance, greater population variance, more extensive and more variable muscle coactivation, and greater EMG amplitude in periods between primary EMG bursts. Peak EMG amplitude increased linearly with cadence and was not different at individual preferred cadence in either novice or highly trained cyclists. However, EMG amplitude in periods between primary EMG bursts, as well as the duration of primary EMG bursts, increased with increasing cadence in novice cyclists but were not influenced by cadence in highly trained cyclists. Our findings suggest that muscle recruitment is highly skilled in highly trained cyclists and less refined in novice cyclists. More skilled muscle recruitment in highly trained cyclists is likely a result of neuromuscular adaptations due to repeated performance of the cycling movement in training and competition.  相似文献   

4.
Estimation of instantaneous moment arms of lower-leg muscles   总被引:2,自引:0,他引:2  
Muscle moment arms at the human knee and ankle were estimated from muscle length changes measured as a function of joint flexion angle in cadaver specimens. Nearly all lower-leg muscles were studied: extensor digitorum longus, extensor hallucis longus, flexor digitorum longus, flexor hallucis longus, gastrocnemius lateralis, gastrocnemius medialis, peroneus brevis, peroneus longus, peroneus tertius, plantaris, soleus, tibialis anterior, and tibialis posterior. Noise in measured muscle length was filtered by means of quintic splines. Moment arms of the mm. gastrocnemii appear to be much more dependent on joint flexion angles than was generally assumed by other investigators. Some consequences for earlier analyses are mentioned.  相似文献   

5.
The aim of the study was to evaluate maximal isometric (dynamometer based {MVC-NORM} and isometric squat {MIS-NORM}) and sub-maximal EMG normalisation methods (60%-NORM, 70%-NORM, 80%-NORM) for dynamic back squat exercise (DSQ-EX). The absolute reliability (limits of agreement {LOA}, coefficient of variation {CV%}), relative reliability (intra-class correlation coefficient {ICC}) and sensitivity of each method was assessed. Ten resistance-trained males attended four sessions. Session one assessed maximum back squat strength (three repetition maximum {3RM}). In the remaining three sessions Vastus lateralis (VL) and Bicep femoris (BF) EMG were measured whilst participants completed normalisation tasks and DSQ-EX sets at 65%, 75%, 85% and 95% of 3RM. MIS-NORM produced lower intra-participant CV% compared to MVC-NORM. 80%-NORM produced lower intra-participant CV% than other sub-maximal methods for VL and BF during eccentric and concentric phases. 80%-NORM also produced narrower 95% LOA results than all other normalisation methods. The MIS-NORM method displayed higher ICC values for both muscles during eccentric and concentric phases. The 60%-NORM and 70%-NORM methods were the most sensitive for VL and BF during eccentric and concentric phases. Only normalisation methods for the concentric action of the VL enhanced sensitivity compared to unnormalised EMG. Overall, dynamic normalisation methods demonstrated better absolute reliability and sensitivity for reporting VL and BF EMG within the current study compared to maximal isometric methods.  相似文献   

6.
The purpose of this study was to examine the reliability of normalisation methods used in the study of the posterior and posterolateral neck muscles in a group of healthy controls. Six asymptomatic male subjects performed a total of 12 maximum voluntary isometric contractions (MVIC) and 60%-submaximal isometric contractions (60%-MVIC) against the torque arm of an isokinetic dynamometer whilst surface and intramuscular electromyography (EMG) was recorded unilaterally from representative posterior and posterolateral locations. Reliability was calculated using intra-class correlation coefficient (ICC), relative standard error of measurement (%SEM) and relative coefficient of variation (%CV). Maximal torque output was found to be highly reliable in the directions of extension and right lateral bending when the first of three MVIC contractions was excluded. When averaged across contraction direction, high reliability was found for both surface (MVIC: ICC=0.986, %SEM=7.5, %CV=9.2; 60%-MVIC: ICC=0.975, %SEM=10, %CV=13.7) and intramuscular (MVIC: ICC=0.910, %SEM=20, %CV=19.1; 60%-MVIC: ICC=0.952, %SEM=16.5, %CV=13.5) electrodes. Intramuscular electrodes displayed the least reliability in right lateral bending. The use of visual feedback markedly increased the reliability of 60%-MVIC contractions.  相似文献   

7.
The peroneus longus (PL) is a rearfoot evertor, important in frontal plane foot motion. Studying PL function has been limited by previous electromyography (EMG) studies reporting poor between-day reliability. Due to its close proximity to adjacent muscles, EMG measures of PL may be susceptible to crosstalk, thus correct electrode placement is vital. The aim of this study was to use ultrasound to aid placement of small surface EMG electrodes and determine the between-day reliability of PL EMG in healthy participants’ walking. Ten participants walked barefoot and shod at a controlled, self-selected speed. Six trials per condition, per session, were recorded over two days (mean (SD): 5 (3) days apart). The muscle belly was located using ultrasound. EMG was recorded with surface electrodes (Trigno™ Mini, Delsys, Inc.) at 2000 Hz. Amplitude was normalized to the peak per gait cycle and time normalized to the gait cycle. Reliability of discrete variables were primarily assessed with the standard error of measurement (SEM), plus the coefficient of multiple correlation (CMC), the coefficient of variation (CV) and the intra-class correlation coefficient (ICC). The pattern of the EMG profile was consistent. The SEM of peak amplitude was 4% (3–8%) and 3% (2–5%) for barefoot and shod respectively. For timing of the peak the SEM was 2% (1–3%) and 1% (1–2%) for barefoot and shod respectively. Low SEM of discrete variables suggests good reliability of PL EMG during walking supporting the future use of this protocol. Therefore activation of PL can be confidently studied in repeated-measures study designs.  相似文献   

8.
The purpose of this study was to compare the reliability of trunk muscle activity measured by means of surface electromyography (EMG) during maximal and sub-maximal voluntary isometric contractions (MVC/sub-MVC) over repeated trials within-day and between-days in healthy controls and patients with chronic low back pain (CLBP). Eleven volunteers (six controls and five CLBP patients) were assessed twice with a 1-week interval. Surface EMG signals were recorded bilaterally from six trunk muscles. Intra-class correlation coefficients (ICC) and standard error of measurement as a percentage of the grand mean (%SEM) were calculated. MVC and sub-MVC showed excellent within-day reliability in both healthy controls and CLBP patients (ICC mean 0.91; range 0.75-0.98; %SEM mean 4%; range 1-12%). Sub-MVC for both groups between-days showed excellent reliability (ICC mean 0.88; range 0.78-0.97; %SEM mean 7%; range 3-11%). The between-days MVC for both groups showed trends towards lower levels of reliability (ICC mean 0.70; range 0.19-0.99; %SEM mean 17%; range 4-36%) when compared to sub-MVC. Findings of the study provide evidence that sub-MVC are preferable for amplitude normalisation when assessing EMG signals of trunk muscles between-days.  相似文献   

9.
One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined the effects of different footwear conditions on the activity of ankle plantar flexors during walking. Ten healthy habitually shod individuals walked overground in shoes, barefoot and in flip-flops while fine-wire electromyography (EMG) activity was recorded from flexor hallucis longus (FHL), soleus (SOL), and medial and lateral gastrocnemius (MG and LG) muscles. EMG signals were peak-normalised and analysed in the stance phase using Statistical Parametric Mapping (SPM). We found highly individual EMG patterns. Although walking with shoes required higher muscle activity for propulsion than walking barefoot or with flip-flops in most participants, this did not result in statistically significant differences in EMG amplitude between footwear conditions in any muscle (p > 0.05). Time to peak activity showed the lowest coefficient of variation in shod walking (3.5, 7.0, 8.0 and 3.4 for FHL, SOL, MG and LG, respectively). Future studies should clarify the sources and consequences of individual EMG responses to different footwear.  相似文献   

10.
Asymmetric osteoarthritis (OA) is a common type of OA in the ankle joint. OA also influences the muscles surrounding a joint, however, little is known about the muscle activation in asymmetric ankle OA. Therefore, the aim of this study was to characterize the patients’ muscle activation during isometric ankle torque measurements and level walking. Surface electromyography (EMG) was measured of gastrocnemius medialis (GM) and lateralis (GL), soleus (SO), tibialis anterior (TA), and peroneus longus (PL) in 12 healthy subjects and 12 ankle OA patients. To obtain time and frequency components of the EMG power a wavelet transformation was performed. Furthermore, entropy was introduced to characterize the homogeneity of the wavelet patterns.Patients produced lower plantar- and dorsiflexion torques and their TA wavelet spectrum was shifted towards lower frequencies. While walking, the patients’ muscles were active with a lower intensity and over a broader time–frequency region. In contrast to controls and varus OA patients, maximal GM activity of valgus OA patients lagged behind the activity of GL and SO. In both tasks, PL of the valgus patients contained more low frequency power. The results of this study will help to assess whether surgical interventions of ankle OA can reestablish the muscle activation patterns.  相似文献   

11.
To compare the activity of lower extremity muscles during land walking (LW), water walking (WW), and deep-water running (DWR), 9 healthy young subjects were tested at self-selected low, moderate, and high intensities for 8 sec with two repetitions. Surface EMG electrodes were placed on the tibialis anterior (TA), soleus (SOL), medial gastrocnemius (GAS), rectus femoris (RF), and biceps femoris (BF). During DWR, the SOL and GAS activities were lower than LW and WW. The BF activities were higher during DWR than LW and WW. It was considered that the lower activity of SOL and GAS depended on water depth, and higher activity of BF occurred by greater flexion of the knee joint or extension of the hip joint during exercise.  相似文献   

12.
The intrinsic and extrinsic muscles are considered to stabilize the foot and contribute to propulsion during walking. This study aimed to clarify the functional relationship between intrinsic and extrinsic muscles during walking. Thirteen healthy men participated in this study. The muscle activities of the intrinsic muscles (quadratus plantae and abductor hallucis), and the extrinsic muscles (flexor hallucis longus, flexor digitorum longus, and tibialis posterior) were measured using fine-wire and surface electromyography during walking. The muscle onset timing after foot contact was calculated and compared among muscles using the one-way ANOVA. The stance phase was divided into early and late braking, and early and late propulsion phases. Muscle activity among phases was compared using repeated-measures ANOVA. The onset time of the abductor hallucis was significantly earlier than those of the flexor digitorum longus and tibialis posterior. The quadratus plantae demonstrated significantly earlier onset than that of the tibialis posterior. In the late propulsion phase, the activity of extrinsic muscles decreased, whereas intrinsic muscles were continuously active. Early activation of the intrinsic muscles may stabilize the foot for efficient torque production by the extrinsic muscles. Furthermore, the intrinsic muscles may contribute to the final push-off after the deactivation of extrinsic muscles.  相似文献   

13.
Prior to implementing a normalisation method, the standardisation and reliability of the method needs to be examined. This investigation aimed to assess the reliability of EMG amplitudes and test outputs from proposed normalisation methods for the triceps surae. Sixteen participants completed isometric (maximum and sub-maximum); isokinetic (1.05 rad/s, 1.31 rad/s and 1.83 rad/s) squat jump and 20 m sprint conditions, on 3 separate occasions over 1 week. The EMG data was collected from the medial and lateral gastrocnemius (MG and LG) and soleus (SOL). Log transformed typical error measurements (TEMCV%) assessed EMG signal and test output reliability across the three sessions. Only the squat jump provided acceptable EMG reliability for all muscles both between days (SOL: 13%; MG: 14.5%; LG: 11.8%) and between weeks (SOL: 14.5%; MG: 12.9%; LG: 8.9%), with the sprint only showing poor reliability in the LG between days (16.3%). Acceptable reliability for the isometric and isokinetic conditions were muscle and re-test period dependant. Reliable output was found for the squat jump (4.1% and 3.6%), sprint (0.8% and 0.6%) and 1RM plantar flexion test (2.8% and 3.5%) between days and weeks, respectively. Isokinetic plantar flexion displayed poor reliability at all velocities between days and weeks. It was concluded that the squat jump provides a standardised and reproducible reference EMG value for the triceps surae for use as a normalisation method.  相似文献   

14.
The aim of this study was to investigate muscle?s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal?s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7–542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors? muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task.  相似文献   

15.
The length-force relations of nine different skeletal muscles in the hindlimb of the cat were determined experimentally, with electrical stimulation of the sciatic nerve as the activation mode. It was shown that the active-, passive-, and total-force patterns varied widely among the muscles. The tibialis posterior (TP), medial and lateral gastrocnemius (MG, LG) and flexor digitorum longus (FDL) had a symmetric active-force curve, whereas the tibialis anterior (TA), peroneus brevis (PB), peroneus longus (PL), extensor digitorum longus (EDL), and soleus (SOL) had an asymmetric curve which exhibits about 25% of the maximal isometric force at extreme lengths. The SOL, EDL, and LG had a low-level passive force which appeared at short muscle length, whereas all other muscles exhibited initial passive force just before the optimal length. The total force was rising quasi-linearly for the SOL, whereas the other muscles exhibited an intermediate plateau about the optimal length. The LG and FDL had a substantial but temporary intermediate dip in the total force as the muscle was elongated past the optimal length. The elongation range of the various muscles also varied, ranging from +/- 15 to +/- 30% of the optimal length. The elongation range was symmetric for the FDL, LG, MG, TP, SOL, and EDL, and asymmetric for the PL, PB, and TA, being -12 to + 17%, -12 to + 17%, and -35 to + 12%, respectively. Two different models which incorporate muscle architecture were successfully fitted to the experimental data of the muscles except for the MG and TA. The architecture of these two muscles is highly nonhomogeneous and contains compartments with two pennation patterns or two different optimal lengths. New models, which add spatially and temporally the individual characteristics of each compartment of the muscles, were constructed for these two muscles. The new models demonstrated high correlation to the experimental data obtained from the MG and TA. It was concluded that the length-force relation varies widely among various skeletal muscles and is probably dependent on the primary function of the muscle in the context of integrated movement; this is a manifestation of architectural factors such as fiber pennation pattern and angle, cross-sectional area, ratio of muscle to tendon length, distribution of the fiber length within the muscle and compartmental pennation.  相似文献   

16.
As a background for studies concerning the effects of training on the properties and fibre type composition of skeletal muscle, information is needed concerning the normal duration of muscle use per day. Data of this kind were collected from adult cats, using implanted electrodes for electromyographic recording from hindlimb muscles acting across the ankle joint: extensor digitorum longus (EDL), tibialis anterior (TA), peroneus longus (PL), lateral gastrocnemius (LG) and soleus (SOL). The accumulated duration of any recorded activity was expressed, for each electrode site, as a percentage of total sampling time ("duty time"). As measured intermittently across 24 h periods (4 min sampling per 30 min), these duty times were markedly and significantly different among the various muscles, averages varying from 1.9% for EDL up to 9.5% for posterior PL and 13.9% for SOL. The distribution of activity across the various muscles was markedly different between highly active periods (mid-day) and periods of rest (mid-night). The 24 h duty times were strongly and significantly correlated to duty times obtained for only mid-day activity but not to those for only mid-night activity. Following the end of the physiological measurements, the animals were sacrificed and the muscles were analyzed with regard to fibre type composition (histochemistry). There was a significant positive correlation between the 24 h duty time and the percentage of type I fibres ("slow"). In the Discussion, the present results from cats are briefly compared to previously published data for humans.  相似文献   

17.
Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to – or is compensated by – other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors’ activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors’ activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles’ activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.  相似文献   

18.
Electromyography (EMG) is the standard modality for measuring muscle activity. However, the convenience and availability of low-cost accelerometer-based wearables makes mechanomyography (MMG) an increasingly attractive alternative modality for clinical applications. Literature to date has demonstrated a strong association between EMG and MMG temporal alignment in isometric and isokinetic contractions. However, the EMG-MMG relationship has not been studied in gait. In this study, the concurrence of EMG- and MMG-detected contractions in the tibialis anterior, lateral gastrocnemius, vastus lateralis, and biceps femoris muscles were investigated in children during self-paced gait. Furthermore, the distribution of signal power over the gait cycle was statistically compared between EMG-MMG modalities. With EMG as the reference, muscular contractions were detected based on MMG with balanced accuracies between 88 and 94% for all muscles except the gastrocnemius. MMG signal power differed from that of EMG during certain phases of the gait cycle in all muscles except the biceps femoris. These timing and power distribution differences between the two modalities may in part be related to muscle fascicle length changes that are unique to muscle motion during gait. Our findings suggest that the relationship between EMG and MMG appears to be more complex during gait than in isometric and isokinetic contractions.  相似文献   

19.
This study’s aim was to determine the between days reliability of surface EMG recordings from the superficial quadriceps during a multi joint sub-maximal fatiguing protocol. Three subject groups (healthy n = 29; patellofemoral pain syndrome n = 74; knee osteoarthritis n = 55) performed the task at 60 maximum voluntary isometric contraction on three separate days. Spectral and amplitude EMG parameters were recorded from vastus medialis oblique, vastus lateralis and rectus femoris and were analysed for between days reliability using intraclass correlation coefficient (ICC(2,1)), the standard errors of measure and smallest detectable differences. For frequency results, initial and final frequency values had ‘good’ or ‘excellent’ reliability in all groups for all muscles. ICCs for median frequency slopes for vastus medialis oblique, vastus lateralis, and rectus femoris respectively, in the osteoarthritis group were 0.04, 0.55, and 0.72; in the patellofemoral pain group were 0.41, 0.17, and 0.33; in the healthy group were 0.68, 0.64, and 0.31. The standard errors of measurement and smallest detectable differences for all groups and for all muscles were unacceptably high. For amplitude results, ICC root mean squared initial and final values were ‘good’ to ‘excellent’ for all groups and all muscles, albeit with high measurement error. The ICCs for root mean squared slopes in all tests were ‘poor’ with extremely high measurement error. The poor between days reliability and high measurement error suggests that surface EMG should not be adopted to assess fatigue during multi joint sub-maximal isometric quadriceps testing.  相似文献   

20.
The first aim was to investigate the impact of different electromyography (EMG) parameters as a reference to normalize the EMG amplitude of the superficial quadriceps femoris muscles across different sets of a knee extension exercise. The second aim is to examine the reliability between days of the EMG parameters used as a reference. Eleven young males attended the laboratory on 4 different days and performed one repetition maximum test, maximumvoluntary isometric contractions, and a resistance training protocol until failure. Surface EMG was placed over the rectus femoris, vastus lateralis, and vastus medialis muscles. Seven EMG parameters were calculated from the tasks and used to normalize EMG amplitude measured during the resistance training protocol. A repeated-measures two-way ANOVA was used (normalized EMG amplitude × set) to compare normalized EMG across sets, while an intraclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to calculate the intra-day reliability of the EMG parameters. The present investigation showed that normalized EMG amplitude of the superficial muscles of the quadriceps measured during a knee extension exercise is influenced by the EMG parameter and depends on the muscle. While rectus femoris and vastus lateralis normalized EMG amplitude presented one parameter among seven showing similar value to the other parameters, VM showed two. Lastly, all EMG parameters for all muscles presented an overall excellent reliability and agreement between days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号