首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Titration of Neurospora tyrosinase with 2-mercaptoethanol shows that the increase of absorbance at 700 nm is directly correlated to the loss of enzymatic activity. Approximately 2 mol of 2-mercaptoethanol per mole of protein are needed for full development of the green, enzymatically inactive complex. The increase of absorbance at 700 nm is also proportional to the intensity of the EPR signal and the amount of non-covalently bound 2-[35S] mercaptoethanol to the enzyme. The maximal EPR intensity reaches 70% of the protein concentration and at most 0.7--0.8 mol of 2-[35S] mercaptoethanol is bound per mol of enzyme. 2. Stopped-flow measurements show that in the reaction between 2-mercaptoethanol and Neurospora tyrosinase a raction intermediate with a strong absorption band at 360 nm is formed in an apparent second-order reaction. This intermediate displays no EPR-detectable signals. The intermediate decays in a similar complex fashion as the absorption band at 700 nm is formed. 3. The reaction of Neurospora tyrosinase with a variety of sulfhydryl compounds was also investigated. In most cases green coloured, enzymatically inactive complexes are formed displaying slightly different EPR signals. However, with cysteine and cysteamine violet coloured, enzymatically inactive complexes are formed which show rather different EPR signals. The integrated EPR intensities amount to 40--70% of the protein concentration. Based on simulations of 9 and 35 GHz spectra all observed EPR spectra can be represented as true S = 1/2 systems. The cysteamine complex can be interpreted as arising from a mixed valence Cu2+ . Cu+ complex. The 2-mercaptoethanol spectra can, however, arise from sulphur radicals. 4. Treatment of Agaricus bispora tyrosinase and Cancer pagures hemocyanin with 2-mercaptoethanol results in green-coloured, EPR detectable complexes similar to the one found with Neurospora tyrosinase. No such complexes are formed when hemocyanins from Helix pomatia and Panulirus interruptus were treated with this reagent.  相似文献   

2.
Ye M  English AM 《Biochemistry》2006,45(42):12723-12732
In addition to its superoxide dismutase (SOD) activity, Cu,Zn-superoxide dismutase (CuZnSOD) catalyzes the reductive decomposition of S-nitroso-L-glutathione (GSNO) in the presence of thiols such as L-glutathione (GSH). The GSNO-reductase activity but not the superoxide dismutase (SOD) activity of CuZnSOD is inhibited by the commonly used polyaminocarboxylate metal ion chelators, EDTA and DTPA. The basis for this selective inhibition is systematically investigated here. Incubation with EDTA or DTPA caused a time-dependent decrease in the 680 nm d-d absorption of Cu(II)ZnSOD but no loss in SOD activity or in the level of metal loading of the enzyme as determined by ICP-MS. The chelators also protected the SOD activity against inhibition by the arginine-specific reagent, phenylglyoxal. Measurements of both the time course of SNO absorption decay at 333 nm and oxymyoglobin scavenging of the NO that is released confirmed that the chelators inhibit CuZnSOD catalysis of GSNO reductive decomposition by GSH. The decreased GSNO-reductase activity is correlated with decreased rates of Cu(II)ZnSOD reduction by GSH in the presence of the chelators as monitored spectrophotometrically at 680 nm. The aggregate data suggest binding of the chelators to CuZnSOD, which was detected by isothermal titration calorimetry (ITC). Dissociation constants of 0.08 +/- 0.02 and 8.3 +/- 0.2 microM were calculated from the ITC thermograms for the binding of a single EDTA and DTPA, respectively, to the CuZnSOD homodimer. No association was detected under the same conditions with the metal-free enzyme (EESOD). Thus, EDTA and DTPA must bind to the solvent-exposed active-site copper of one subunit without removing the metal. This induces a conformational change at the second active site that inhibits the GSNO-reductase but not the SOD activity of the enzyme.  相似文献   

3.
The aerobic interaction between ascorbate oxidase and L-tyrosine, L-3,4-dihydroxyphenylalanine or 3,4-dihydroxycinnamic acid in 1:10 molar ratio was followed by optical absorption, CD and EPR spectroscopy in 0.1 M phosphate buffer at pH 5.0. While the spectra of the system ascorbate oxidase—L-tyrosine remain practically unaffected after several hours, indicating that no oxidation of the amino acid occurs in the conditions employed, rather drastic changes can be observed in the spectra of the ascorbate oxidase-catechol systems. In particular, while the optical absorption below 500 nm increases markedly due to the formation of the substrate oxidation products, an irreversible decrease in intensity of the absorption, CD and EPR spectral features associated with the blue copper(II) chromophores indicates that a partial loss of Type 1 copper by ascorbate oxidase has occurred during this secondary catechol oxidase activity. A copper species characterized by weak positive CD activity at 370 nm and EPR signal at intermediate field between those of the Type 2 and Type 1 coppers can be detected in the early stages of the reaction. The irreversible damage undergone by the protein during catechol oxidase activity may have biological significance and accounts for the low yield of purified enzyme obtained when the crude enzyme extract is left in prolonged contact with low molecular weight cell components, rich in σ-diphenolic compounds.  相似文献   

4.
By means of high sensitive spectrofluorometer the fluorescence spectra have been measured of normal chloroplasts and those with blocked photosystem 2 activity due to photoinhibition or treatment with 0.6 M tris-buffer. At room temperature fluorescence spectra of inactivated chloroplasts are similar to the spectrum of normal chloroplasts measured at low light intensity. Under excitation by intense light a decrease of intensity at 685 nm is appeared (about 3-4 times) in the fluorescence spectra of inactivated chloroplasts as compared to the spectrum of normal chloroplasts. The sharp intensity decrease of maxima at 685 and 695 nm (3-4 times) and small decrease at 680 and 730 nm (by 30-50%) are observed in low temperature fluorescence spectra of inactivated chloroplasts. Thus, the damage of photosystem 2 reaction centres is not accompanied by the preferential decrease of the only fluorescence band. The similarity of fluorescence difference spectra of chloroplasts distinguished by the state of photosystem 2 reaction centre, and the complex structure of difference spectra indicate that the variable fluorescence of chloroplasts during the induction is due to the emission of bulk chlorophyll alpha of the photosystem 2.  相似文献   

5.
Su JH  Havelius KG  Ho FM  Han G  Mamedov F  Styring S 《Biochemistry》2007,46(37):10703-10712
The interaction EPR split signals from photosystem II (PSII) have been reported from the S0, S1, and S3 states. The signals are induced by illumination at cryogenic temperatures and are proposed to reflect the magnetic interaction between YZ* and the Mn4Ca cluster. We have investigated the formation spectra of these split EPR signals induced in PSII enriched membranes at 5 K using monochromatic laser light from 400 to 900 nm. We found that the formation spectra of the split S0, split S1, and split S3 EPR signals were quite similar, but not identical, between 400 and 690 nm, with maximum formation at 550 nm. The major deviations were found between 440 and 480 nm and between 580 and 680 nm. In the regions around 460 and 680 nm the amplitudes of the formation spectra were 25-50% of that at 550 nm. A similar formation spectrum was found for the S2-state multiline EPR signal induced at 0 degrees C. In general, the formation spectra of these signals in the visible region resemble the reciprocal of the absorption spectra of our PSII membranes. This reflects the high chlorophyll concentration necessary for the EPR measurements which mask the spectral properties of other absorbing species. No split signal formation was found by the application of infrared laser illumination between 730 and 900 nm from PSII in the S0 and S1 states. However, when such illumination was applied to PSII membranes poised in the S3 state, formation of the split S3 EPR signal was observed with maximum formation at 740 nm. The quantum yield was much less than in the visible region, but the application of intensive illumination at 830 nm resulted in accumulation of the signal to an amplitude comparable to that obtained with illumination with visible light. The split S3 EPR signal induced by NIR light was much more stable at 5 K (no observable decay within 60 min) than the split S3 signal induced by visible light (50% of the signal decayed within 30 min). The split S3 signals induced by each of these light regimes showed the same EPR spectral features and microwave power saturation properties, indicating that illumination of PSII in the S3 state by visible light or by NIR light produces a similar configuration of YZ* and the Mn4Ca cluster.  相似文献   

6.
The X- and Q-band EPR spectra of Pseudomonas aeruginosa (63Cu)azurin and Alcaligenes denitrificans azurin have been measured at pH = 5.2 and 9.2, in the presence and absence of 40% glycerol. The EPR spectra of both proteins could properly be simulated by taking into account a spread in the tetrahedral angle of the copper site. The change in the EPR spectrum of Pseudomonas aeruginosa (63Cu)azurin that is observed upon an increase of the pH from 5.2 to 9.2 is consistent with a small decrease of the average tetrahedral angle from 61 degrees to 60 degrees. This geometrical change is consistent with the interpretation of earlier NMR and EXAFS observations. No pH effect is observed for Alcaligenes denitrificans azurin, in agreement with predictions based on crystallographic evidence. Glycerol has only a marginal effect on the appearance of the EPR spectra, and does not alleviate the "g-strain."  相似文献   

7.
An electron paramagnetic resonance (EPR) study was performed for potato and wheat starch containing Cu2+ ions as a paramagnetic probe. Distribution of water in the starch granules as well as the interactions between the copper and starch matrix of different crystalline structures were determined. EPR spectra of the native starches consisted of two different centers of Cu2+. One of them, giving at 293 and 77 K an EPR signal of axial symmetry with a well-resolved hyperfine structure (HFS), was assigned to the Cu2+ -starch complex in which Cu2+ ions strongly interacted with oxygen atoms of the starch matrix. Another Cu2+ species, exhibiting an isotropic signal at 293 K and an axial signal with resolved HFS at 77 K, was attributed to a [Cu(H2O)6]2+ complex freely rotating at room temperature and immobilized at low temperatures. Interaction of Cu2+ with the starch matrix and the relative number of the particular copper species depended on the crystallographic type of starch. Dehydration at 393 K resulted in elimination of the rotating complex signal and decrease of the total intensity of the EPR spectrum caused by clustering of the Cu2+ ions. Freezing at 77 K and thawing led to restoring of the spectrum intensity and reappearing of the signal of the [Cu(H2O)6]2+ complex. This effect, related to liberation of water molecules from the granule semicrystalline growth rings on freezing/thawing, was especially visible for wheat starch, indicating differences in the water retention ability of starch granules of different crystallographic structure.  相似文献   

8.
Azide binding to the blue copper oxidases laccase and ascorbate oxidase (AO) was investigated by electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. As the laccase : azide molar ratio decreases from 1:1 to 1:7, the intensity of the type 2 (T2) Cu(II) EPR signal decreases and a signal at g approximately 1.9 appears. Temperature and microwave power dependent EPR measurements showed that this signal has a relatively short relaxation time and is therefore observed only below 40 K. A g approximately 1.97 signal, with similar saturation characteristics was found in the AO : azide (1:7) sample. The g < 2 signals in both proteins are assigned to an S = 1 dipolar coupled Cu(II) pair whereby the azide binding disrupts the anti-ferromagnetic coupling of the type 3 (T3) Cu(II) pair. Analysis of the position of the g < 2 signals suggests that the distance between the dipolar coupled Cu(II) pair is shorter in laccase than in AO. The proximity of T2 Cu(II) to the S = 1 Cu(II) pair enhances its relaxation rate, reducing its signal intensity relative to that of native protein. The disruption of the T3 anti-ferromagnetic coupling occurs only in part of the protein molecules, and in the remaining part a different azide binding mode is observed. The 130 K EPR spectra of AO and laccase with azide (1:7) exhibit, in addition to an unperturbed T2 Cu(II) signal, new features in the g parallel region that are attributed to a perturbed T2 in protein molecules where the anti-ferromagnetic coupling of T3 has not been disrupted. While these features are also apparent in the AO : azide sample at 10 K, they are absent in the EPR spectra of the laccase : azide sample measured in the range of 6-90 K. Moreover, pulsed ENDOR measurements carried out at 4.2 K on the latter exhibited only a reduction in the intensity of the 20 MHz peak of the 14N histidine coordinated to the T2 Cu(II) but did not resolve any significant changes that could indicate azide binding to this ion. The lack of T2 Cu(II) signal perturbation below 90 K in laccase may be due to temperature dependence of the coupling within the trinuclear : azide complex.  相似文献   

9.
The heat induced aggregation of human serum albumin (HSA) with and without an equimolar amount of Cu(II) and Zn(II) was investigated by using optical absorption, fluorescence, AFM and EPR spectroscopy. Turbidity experiments as a function of temperature indicate that the protein aggregation occurs after the melting of the protein. The kinetic of HSA aggregation, investigated between 60 and 70 °C by monitoring the optical density changes at 400 nm on a 180 min time window, shows an exponential growth with a rate that increases with the temperature. Fluorescence of the thioflavin T evidences a significant increase of the intensity at 480 nm at increasing incubation time. These results combined with AFM experiments show that the protein aggregates are elongated oligomers with fibrillar-like features. The absence of a lag-phase suggests that the early stage aggregation of HSA follows a downhill pathway that does not require the formation of an organized nucleus. The presence of Cu(II) and Zn(II) ions does not affect the thermally induced aggregation process and the morphology of HSA aggregates. The result is compatible with the binding of the metal ions to the protein in the native state and with the high conformational stability of HSA.  相似文献   

10.
A 405 nm diode laser is used to excite fluorescence of juices of raw and ripe lemons. Emission bands appear approximately at 520 nm and 670 nm. Fluorescence intensity ratio F520/F670 is determined for the two stages. Variation in the fluorescence intensity ratio is observed during the process of ripening or growth of the fruit. Time-resolved spectra at this excitation wavelength reveal two decay times at both the stages at the emission wavelength of 520 nm, and two decay times at the raw stage and one decay time at the ripe stage at 670 nm.  相似文献   

11.
The effects of lowering pH from 7 to 5 on the absorption, circular dichroism (MCD) and EPR spectra were studied for Paracoccus halodenitrificans nitric oxide reductase (NOR). Intensities of the characteristic bands for the high spin heme b, that at 592 nm in the absorption spectrum and those at 591 (+) and 606 (-) in the MCD spectrum decreased considerably. Concomitant cryogenic EPR spectrum indicated a drastic increase in the signal intensity due to the high spin heme b at g approximately 6, of which less than 5% had been EPR detectable at pH 7. Cyanide (x40) bound to the high spin heme b center in the reduced NOR irrespective of pH, while a much larger amount of azide (x1000) was necessary to bind to the reduced NOR at an acidic pH, ca. 5. Based on these results the structure and function of the high spin heme b center as the active site of NOR was discussed.  相似文献   

12.
The effect of ischemic preconditioning on the free-radical state of isolated rat myocardium fixed by rapid freezing at the 25th min of normothermic total ischemia and the 3rd min of reperfusion was studied by the EPR method. It was shown that EPR spectra registered at -40 degrees C consist of two free-radical signals: of the semireduced forms of ubiquinone and flavine coynzymes. It was found that during ischemia and at the beginning of reperfusion, the preconditioning results in a narrowing of the spectra (as compared with control) due to an increase in the narrow ubisemiquinone EPR signal portion, and a decrease in the total concentration of free-radical centers: by 16% in the case of ischemia, and 23% in the case of reperfusion. It was concluded that in both cases the changes were due to a decrease in the concentration of myocardial flavosemiquinones as a result of ischemic preconditioning. We registered the microvawe power saturation curves for these two stages, which corresponded to control and ischemic preconditioning. In the case of ischemia these dependences had similar shapes; however, in the case of reperfusion they differ from each other due to changes in the relative intensities of the EPR signals from ubisemiquinone and flavosemiquinones in the integral myocardial free-radical spectra.  相似文献   

13.
The effect of binding of N3-, SCN-, OCN-, and F- to bovine ceruloplasmin (Cp) has been studied in detail using absorption, circular dichroic (CD), and electron paramagnetic resonance (EPR) spectroscopies. With the addition of increasing amounts of N3-, SCN-, and OCN- to a Cp solution, the intensity of the band at 614 nm at first increased several percent and then decreased gradually as at least one type I copper was reduced and/or as the type I copper was changed to type II copper. Concomitantly, new bands appeared at 430 and 365 nm for N3-, 435 and 380 nm for SCN-, and about 390 nm for OCN-. A conformational change in the protein induced by the binding of N3-, SCN-, and OCN- to the type II and type III coppers led to the change in the CD spectra. The observed increase of the band at about 430 nm was attributed to the change occurring at the type I copper site. On the other hand, the band at about 370 nm may come from a charge transfer of coordinated anions to the Cu(II) ion. Fluoride ion did not induce the appearance of the band at around 430 and 370 nm, but the parallel component of the type II copper EPR signal was split upon the binding of two fluoride ions to the copper ion.  相似文献   

14.
在温室条件下,研究了模拟UV-B辐射(280~320 nm)增强对6个灯盏花居群的类黄酮、丙二醛(MDA)含量和抗氧化酶活性的影响及其种内差异,并利用ISSR分子标记技术对灯盏花居群进行遗传背景分析.结果表明:在UV-B辐射增强条件下,灯盏花D01、D53、D63和D65居群在成苗期、盛花期和成熟期的类黄酮含量均显著增加,成苗期与盛花期MDA含量显著降低;而D47和D48居群3个生育期的MDA含量和盛花期类黄酮含量均显著增加,成熟期显著降低.D01居群3个生育期的POD、APX活性,成苗期、盛花期CAT活性与盛花期SOD活性均显著升高;D47居群3个生育期的SOD、CAT和APX活性,成熟期POD活性显著下降;D48居群3个生育期的POD、APX活性,成苗期、成熟期的SOD活性均显著下降;D53居群成苗期和盛花期SOD、APX活性,盛花期CAT活性显著增加;D63居群3个生育期的SOD、POD和APX活性均显著上升;D65居群除成熟期的CAT和APX活性没有显著变化外,3个生育期的4种抗氧化酶活性均显著上升.灯盏花居群对UV B辐射增强的响应有明显的种内差异,D01、D53、D63和D65为UV耐性居群,而D47和D48居群的UV敏感性较高.灯盏花居群不同生育期对UV-B辐射的响应为盛花期>成苗期>成熟期.居群间的遗传多样性差异明显,在遗传距离为0.11的水平上,可将D01、D53、D63和D65居群归为一类,D47和D48居群为另一类,这与根据生理响应指数判断的UV耐性与敏感居群的结果基本一致.  相似文献   

15.
Paramagnetic probes of the domain structure of histidine-rich glycoprotein   总被引:1,自引:0,他引:1  
The interaction of Cu2+ and Fe3+-mesoporphyrin with histidine-rich glycoprotein (HRG) from rabbit serum was examined spectroscopically. The first equivalent of Cu2+ binds to HRG producing a type II electron paramagnetic resonance (EPR) spectrum with g[[ = 2.25, gm = 2.05, A[[ = 0.019 cm-1 (180 G), and superhyperfine along gm. These spectral parameters suggest moderately covalent coordination of Cu2+ to the protein by nitrogens. With increasing Cu2+ the superhyperfine disappears; however, the g and A values change only marginally. The increase in EPR signal amplitude throughout the addition of 1-15 equiv of Cu2+ is linear and thereafter maximizes, suggesting 18-22 equiv are bound. In contrast, changes in the circular dichroism spectrum at 280 nm appear sigmoidal and can be interpreted as the binding of Cu2+ to two structurally distinct regions of the protein. Evidence for two structurally distinct binding domains is found by comparing EPR spectra of Cu2+ complexes of HRG with spectra from complexes of two of its major proteolysis products (peptides). After binding 1 equiv of Cu2+, both the 30-kDa histidine-rich peptide and the native protein exhibit identical spectra including the pronounced superhyperfine. In contrast, the spectrum of the histidine-normal 45-kDa peptide with 1 equiv of Cu2+ bound lacks superhyperfine and parallels closely that of the native protein with 20 equiv bound. Finally, Fe3+-mesoporphyrin binds to HRG exhibiting both high-spin (g = 6.05) and low-spin (gz = 2.94, gy = 2.25, gx = 1.50) EPR resonances, and the latter imply bis(histidine) coordination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The reactions with N,N-diethyldithiocarbamate (DDC) of zinc, cobalt and copper carbonic anhydrase from bovine erythrocytes were investigated. The native zinc enzyme was inhibited by DDC, but no removal of zinc could be detected even at a very high [ligand]/[protein] ratio. At identical pH values a larger inhibitory effect was found for the cobalt enzyme. The metal was removed by DDC from the protein at pH less than 7.0. No cobalt removal occurred at pH 10, where a stable ternary complex with the enzyme-bound Co(II) was detected. Its optical and EPR spectra are indicative of five-coordinate Co(II). The reaction of the Cu(II) enzyme with stoichiometric chelating agent was marked by the appearance of an electronic transition at 390 nm (epsilon = 4300 M-1 X cm-1). Metal removal from the copper enzyme readily occurred as the ligand was in excess over the metal, with parallel appearance of a band at 440 nm, which was attributed to the free Cu(II)-DDC complex. Also, in the case of the copper enzyme an alkaline pH was found to stabilize the ternary adduct with the diagnostic 390 nm band. EPR spectra showed that the ternary adduct is a mixture of two species, both characterized by the presence in the EPR spectrum of a superhyperfine structure from two protein nitrogens and by a low g parallel value, indicative of coordination to sulfur ligands. It is suggested that the two species contain the metal as penta- and hexacoordinated, respectively. Measurements of the longitudinal relaxation time, T1, of the water protons suggested that water coordination is retained in the latter case. Hexacoordination with retention of water is also proposed for the Cu(II) derivatives with the bidentate oxalate and bicarbonate anions, unlike the corresponding Co(II) derivatives, which are pentacoordinated. Different coordination of Co(II) and Cu(II) adducts may be relevant to the difference of activity of the two substituted enzymes.  相似文献   

17.
The kinetics of chemiluminescence (CL) accompanying Fe2+-induced lipid peroxidation (LPO) in liposome suspension has been investigated. A sequence of stages was observed, namely: (1) fast CL flash (FF); (2) latent period (LP); (3) slow CL flash (SF) and (4) stationary chemiluminescence (SL). The first three stages are known to reflect the Fe2+-mediated LPO process. In spite of the fact that at the stage of SL Fe2+ has completely oxidized and MDA has not accumulated, CL intensity was found to increase and after 0.5–1 h reached a value that was several times higher than SF amplitude. The maximal SL level was linearly dependent on the initial Fe2+ concentration and was not dependent on liposome concentration in the suspension. The nature of the processes responsible for CL emission at the stage of SL has been investigated using free radical reaction inhibitors and measurement of CL spectra. The SL spectrum was observed in the red region (λ>590 nm) in contrast to the SF CL spectrum (maximum at 540 nm). SL amplitude was strongly inhibited by sodium azide (40%), superoxide dismutase (SOD) (30%), desferrioxamine and EDTA (30%), whereas mannitol, ethanol, α-tocopherol and butylated hydroxytoluene were ineffective. The data obtained indicate that CL at the stage of SL is not directly related to LPO process, i.e. lipid free radical recombination. The mechanism of stationary CL generation is discussed.  相似文献   

18.
Zhang Y  Liu C  Yang C 《Photosynthesis research》2012,111(1-2):103-111
The temperature-dependent disassembly process of three monomeric isoforms, namely Lhcb1, Lhcb2, and Lhcb3, of the major light-harvesting chlorophyll (Chl) a/b complexes of photosystem II (LHCIIb) were characterized by observing the changes of absorption spectra, circular dichroism (CD), and dissociation processes of the bound pigments to the in vitro reconstituted complexes subjected to high temperatures. Our results suggest that the three isoforms of LHCIIb undergo conformational rearrangements, structural changes, and dissociations of the bound pigments when the ambient temperature increases from 20 to 90°C. The conformation of the complexes changed sensitively to the changing temperatures because the absorption peaks in the Soret region (436 and 471?nm) and the Qy region (650-660 and 680?nm) decreased immediately upon elevating the ambient temperatures. Analyzing temperature-dependent denaturing and pigment dissociation process, we can divide the disassembly process into three stages: The first stage, appeared from 20°C to around 50-60°C, was characterized by the diminishment of the absorption around 650-660 and 680?nm, accompanied by the blue-shift of the peak at 471?nm and disappearance of the absorbance at 436?nm, which is related to changes in the transition energy of the Chl b cluster, and the red-most Chl a cluster in the LHCIIb. The second stage, beginning at about 50-60°C, was signified by the diminishment of the CD signal between (+)483?nm and (-)490?nm, which implied the disturbance of dipole-dipole interaction of pigments, and the onset of the pigment dissociation. The last stage, beginning at about 70-80°C, indicates the complete dissociation of the pigments from the complex. The physiological aspects of the three stages in the denaturing process are also discussed.  相似文献   

19.
Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X-100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X-100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.  相似文献   

20.
从4个不同棉花品种体内分离到内生菌503株,鉴定了102株,分别属于假单胞杆菌属、黄单胞杆菌属、芽胞杆菌属和欧文氏菌属。分3个不同生长期测定了4个品种的可溶性蛋白含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)活性变化。结果表明,4个品种棉花SOD活性在种期(S1)、芽期(S2)和苗期(S3)呈下降趋势;不同品种、不同生长期的可溶性蛋白含量、POD活性存在极显着差异,品种与生长期还存在显着互作效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号