首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
These studies were undertaken to evaluate the changes in mRNA expression of prostaglandin H synthase (PGHS)-1 and -2 in murine gestational tissues during the latter half of pregnancy. Gestational tissues (decidual caps, membranes surrounding the fetus, and placentae), uterus, and cervix were collected from pregnant mice at days 12, 14, 16, 18, and 19 (am and pm) of gestation (n = 4), and total RNA was isolated and evaluated for PGHS-1 and PGHS-2 expression by northern blot analysis. Expression was normalized to GAPDH. There were no significant increases in PGHS-2 mRNA expression in any of the tissues studied through gestation. In contrast, expression of PGHS-1 mRNA increased significantly at term in the uterus and fetal membranes. In the placenta, mRNA for PGHS-1 was elevated at day 18 and remained elevated over the remainder of the study. These findings suggest that, in the mouse, increased production of PGs by uterine and intrauterine tissues during pregnancy is associated with up-regulation of PGHS-1 and not PGHS-2.  相似文献   

2.
Activities of glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49; G6PDH) and malate dehydrogenase (E.C. 1.1.1.37; MDH) were determined fluorometrically in freeze-dried sections of the sheep uterus during the estrous cycle and pregnancy. Samples (0.2–0.3 μg) from the luminal epithelium, uterine glands, maternal caruncles, fetal cotyledons and intercotyledonary trophoblast were assayed in a small aliquot (5 μl) of the reaction medium under oil.Activity of G6PDH in the luminal epithelium, uterine glands and maternal caruncles did not change during the estrous cycle. Activity of MDH in the uterine glands did not change during the cycle, but in the luminal epithelium and maternal caruncles highest activities were found on day 9 and day 2 post-estrus, respectively.The enzyme activities in the fetal tissues were lower than in the maternal tissues. In all maternal tissues, MDH and G6PDH activities decreased during early pregnancy, but after implantation, the activities increased significantly. In fetal tissues G6PDH activity increased, whereas MDH activity decreased during the second half of gestation. These results suggest an increased rate of pentose shunt activity in both maternal and fetal tissues, and an increased rate of Krebs' cycle activity in the maternal but not in the fetal tissues.  相似文献   

3.
Prostaglandins produced in cerebral endothelial cells (CECs) are the final signal transduction mediators from the periphery to the brain during fever response. However, prostaglandins are organic anions at physiological pH, and they enter cells poorly using simple diffusion. Several transporters have been described that specifically transport prostaglandins across cell membranes. We examined the expression of the two principal prostaglandin carriers, prostaglandin transporter (PGT), and multidrug resistance-associated protein 4 (MRP4) in cells of the blood-brain barrier and in choroid epithelial cells in vitro as well as in vivo in rat brain in control conditions and after lipopolysaccharide (LPS) challenge. We detected PGT in primary cultures of rat CECs, astrocytes, pericytes, and choroid epithelial cells. LPS stimulation had no effect on the expression level of PGT in these cells; however, after LPS stimulation the polarized, dominantly luminal, expression pattern of PGT significantly changed. MRP4 is also expressed in CECs, and its level was not influenced by LPS treatment. In rat brain, PGT was highly expressed in the supraoptic and paraventricular nuclei of the hypothalamus, in the ependymal cell layer of the third ventricle, and in the choroid plexus. LPS treatment increased the expression of PGT in the supraoptic and paraventricular nuclei. Our results suggest that PGT and MRP4 likely play a role in transporting prostaglandins through the blood-brain and blood-cerebrospinal fluid barriers and may be involved in the maintenance of prostaglandin homeostasis in the brain and in the initiation of fever response.  相似文献   

4.
The objectives of this study were to determine the secretion patterns of prostaglandins (PG) and protein during mid- (Day 100) and late- (Day 140) pregnancy in the ewe and to ascertain whether that pattern is altered by in vitro heat shock. Explant cultures were prepared from intercaruncular endometrium, caruncular endometrium, fetal cotyledon and interplacentomal placenta. Cultures were incubated at 39 or 42 degrees C for 18 h in the presence of arachidonic acid or L-[4,5(3)H]leucine. There were no effects of day of gestation or consistent effects of temperature upon de novo synthesis of tissue and secretory protein. Elevated temperature generally depressed PGE(2) secretion by maternal tissues and PGF secretion by caruncular endometrium but had little effect on PGE(2) release by fetal tissues or on PGF release by intercaruncular endometrium or fetal tissues. Day of gestation by tissue type interactions were found for PGF and PGE(2) release. At Day 100, maternal tissues secreted more PGF and PGE(2) than fetal tissues; at Day 140, PG secretion from fetal tissues was greater than at Day 100, and fetal PGE(2) release exceeded release from maternal tissues. Tissue proteins resolved by SDS-PAGE revealed the appearance in heat-shocked tissue of 93 and 72 kDa heat-shock proteins. In conclusion, elevated temperature depressed PGE(2) release, particularly from maternal tissues. Changes in PGE(2) suggest that the increase in utero-placental PGE(2) with increasing gestational age is due to changes in secretion of the fetal placenta.  相似文献   

5.
Concentrations of prostaglandins E and F (PGE and PGF) were measured in the embryo or fetus, extra embryonic or fetal membranes (membranes), intercaruncular and caruncular endometrium and plasma collected from uterine and ovarian arterial and venous vessels from separate groups of ewes laparotomized at 5 day intervals from day 10 to day 55 of pregnancy. Our purpose was to investigate the role of prostaglandins E and F in the maternal recognition of pregnancy, implantation and early placental function. Our data suggest that the initial maintenance of the corpus luteum in the pregnant ewe does not involve a reduction in PGF production, compared to pregnant ewes; but a change in the pattern of PGF secretion. This is accompanied by an elevation in PGE production of similar magnitude to that observed in non pregnant ewes. The extra embryonic/fetal membranes appear to be the major source of elevated PGF levels in the maternal circulation prior to day 30 of pregnancy. Between days 35 and 55 of gestation the rising PGF levels in maternal serum probably come from the fetus. Over the same period PGE levels rise in the fetus and intercaruncular endometrium, but PGE secretion into the maternal circulation is not enhanced. A role for PGF and PGE in fetal, placental and uterine growth is suggested; placental and uterine endocrine function may also be targets.  相似文献   

6.
Concentrations of prostaglandins E and F (PGE and PGF) were measured in the embryo or fetus, extra embryonic or fetal membranes (membranes), intercaruncular and caruncular endometrium and plasma collected from uterine and ovarian arterial and venous vessels from separate groups of ewes laparotomized at 5 day intervals from day 10 to day 55 of pregnancy. Our purpose was to investigate the role of prostaglandins E and F in the maternal recognition of pregnancy, implantation and early placental function. Our data suggest that the initial maintenance of the corpus luteum in the pregnant ewe does not involve a reduction in PGF production, compared to pregnant ewes; but a change in the pattern of PGF secretion. This is accompanied by an elevation in PGE production of similar magnitude to that observed in non pregnant ewes. The extra embryonic/fetal membranes appear to be the major source of elevated PGF levels in the maternal circulation prior to day 30 of pregnancy. Between days 35 and 55 of gestation the rising PGF levels in maternal serum probably come from the fetus. Over the same period PGE levels rise in the fetus and intercaruncular endometrium, but PGE secretion into the maternal circulation is not enhanced. A role for PGF and PGE in fetal, placental and uterine growth is suggested; placental and uterine endocrine function may also be targets.  相似文献   

7.
Linoleic acid (18:2n-6) is metabolised to arachidonic acid (20:4n-6), the precursor for 2-series prostaglandins (PGs). Increased consumption of 18:2n-6 during pregnancy may thus modify PG synthesis during labour. We have investigated whether increased 18:2n-6 composition during gestation altered the fatty acid consumption and PG synthesis of maternal and fetal tissues in the sheep. Ewes were fed a control diet or a diet providing 40% more 18:2n-6 from 96 days gestation. Half of each group received dexamethasone on day 136 to up-regulate the PG synthetic pathways promoting parturition. Maternal and fetal tissues were collected at 138 days. The 18:2n-6 diet significantly increased the 20:4n-6 content of maternal plasma, fetal plasma and allantochorion (51-81%) phosphatidylcholine, and fetal liver (40%) and maternal caruncular endometrium (57%) phosphatidylethanolamine. Increased 18:2n-6 intake increased production of PGF(2alpha) and PGE(2) in all placental tissues (maternal caruncular and intercaruncular endometrium and fetal allantochorion) by 23-98%, whereas dexamethasone increased it by 32-142%. This suggests that consumption of an 18:2n-6-enriched diet in late pregnancy enhanced placental PG production by increasing the supply of 20:4n-6. Variations in the extent to which the diet altered the polyunsaturated fatty acid (PUFA) content of the different tissues indicated complex interactions between nutrient availability and metabolic adaptation.  相似文献   

8.
Prostaglandin E(2) 9-keto reductase (9-KPR) activity shifts reversibly PGE(2) into PGF(2 alpha) and may be responsible for the control of prostaglandins (PGs) levels in, among others, placental tissues. The retention of fetal membranes in cows is the postpartum disorder where the disturbances in PGs metabolism have been reported. It has been argued whether these disturbances are due to alterations in 9-KPR activity. In this study, the activity of the enzyme was determined in maternal and fetal bovine placental tissues which were divided into 6 groups as follows: (A) caesarian section before term without retained fetal membranes (n=10), (B) caesarian section before term with retained fetal membranes (n=10), (C) caesarian section at term without retained fetal membranes (n=12), (D) caesarian section at term with retained fetal membranes (n=12), (E) spontaneous delivery at term without retained fetal membranes (n=12), (F) spontaneous delivery at term with retained fetal membranes (n=12). The enzyme activity was measured spectrophotometrically and expressed in nanokatals (nkat) per protein content. The activity increased towards parturition and was significantly higher in maternal than in fetal part of placenta in all groups examined. The significantly higher values in retained than in not retained placental tissues were observed in the samples examined. The present results indicate that the disturbances in 9-KPR activity in bovine retained placenta exist but their reasons still require further experiments.  相似文献   

9.
Some aspects of uterine and placental growth have been examine during pregnancy in the ewe. Changes in vitro rates of protein synthesis, RNA: DNA and protein: DNA ratios and the tissue concentration of DNA in intercaruncular endometrium and caruncles (cotyledons between days 0 (oestrus) and 112 of pregnancy were compared with corresponding changes in the concentrations of high-affinity cytosol receptors for oestradiol and progesterone in whole uterus and caruncles/maternal cotyledons. Rapid growth of the intercaruncular endometrium between days 28 and 112 and of the developing cotyledons between days 28 and 84 occur in the presence of tissue levels of both steroid receptors that are extremely low in relation to the corresponding levels seen in the uterus at oestrus. If uterine responses to steroid hormones are regulated by the amounts of specific receptors present in the tissue, the results support the concept that uterine growth after day 28 of pregnancy results primarily from the physical stimulus of the growing concepts rather than from the actions of endogenous steroid sex hormones.  相似文献   

10.
The insulin-like growth factor (IGF) system plays an important role in the regulation of uterine function and placental growth. However, there is little information regarding the localization and regulation of IGF binding protein-5 (IGFBP-5) in the reproductive tract. The distribution of this IGFBP was therefore investigated using in situ hybridization in sections of utero-placental tissue obtained throughout the estrous cycle, up to Day 55 of gestation, and on Days 16-17 from both horns of ewes with unilateral pregnancies that followed uterine transection. In nonpregnant ewes, IGFBP-5 mRNA was present at high concentrations in the maternal caruncles and luminal epithelium, and at moderate levels in myometrium. In these regions IGFBP-5 mRNA showed cyclic variations, with concentrations peaking around ovulation, whereas low expression in the endometrial stroma remained constant. During pregnancy, there was additional localization to the endometrial glands; and in all regions, with the exception of the caruncles, concentrations increased significantly with gestational age. In transected uteri, concentrations in the luminal epithelium of the pregnant horn were significantly higher than those in the nonpregnant horn. In the caruncles, IGFBP-5 mRNA formed an intense band just below the tips of the invading fetal villi. Below this band, IGFBP-5 mRNA localized to form a series of rings, which could create a route to allow the fetal villi access into the caruncular stroma for nutrient exchange. In conclusion, IGFBP-5 is abundantly expressed in the ovine reproductive tract, with both the concentration and localization differentially regulated during the cycle and pregnancy.  相似文献   

11.
Surfactant protein A (SP-A) functions in homeostasis of lung surfactant and in innate immunity. SP-A is secreted by the fetal lung into amniotic fluid. Additionally it has been detected in gestational tissues. We propose that SP-A influences intrauterine inflammation that is commonly associated with preterm birth, the main underlying cause of neonatal mortality and morbidity. We used our previously established mouse model of LPS-induced preterm birth of live-born pups to investigate the role of SP-A in preterm birth. Mice overexpressing rat SP-A (rSP-A) under the control of human SP-C promoter were used. Cytokine concentrations in maternal and fetal serum and in amniotic fluid and mRNA levels of several inflammatory mediators in lungs and in intrauterine tissues were quantified using Cytometric Bead Array and RNase Protection Assay, respectively. Higher levels of SP-A mRNA were observed in fetal lungs and intrauterine tissues of rSP-A mice compared with wild-type. Using Western blot we detected excess of SP-A protein in fetal lung and in amniotic fluid of rSP-A animals. Despite some differences in the basal levels of TNF-α and IL-10 between rSP-A and wild-type animals, there were no differences in the duration of pregnancy. However, the levels of TNF-α, IL-10 and some other inflammatory mediators in intrauterine tissues and in amniotic fluid differed significantly between the mouse lines after maternal LPS given at 17 dpc. We conclude that SP-A modulates the levels of intrauterine inflammatory mediators involved in preterm birth and may contribute to inflammatory processes related to spontaneous preterm labor.  相似文献   

12.
Birth in many animal species and in humans is associated with activation of hypothalamic-pituitary-adrenal function in the fetus and the increased influence of glucocorticoids on trophoblast cells of the placenta and fetal membranes. We suggest that in ovine pregnancy glucocorticoids directly increase fetal placental prostaglandin production, and indirectly increase prostaglandin production by maternal uterine tissues through the stimulation of placental estradiol synthesis. The events of ovine parturition are compared with those of human parturition. In the latter, we suggest similar direct effects of glucocorticoids on prostaglandin synthesis and metabolism in fetal membranes and similar indirect effects mediated by glucocorticoid-stimulated increases in intrauterine corticotropin-releasing hormone expression.  相似文献   

13.
The levels of prothrombin mRNA in prenatal and postnatal rat tissues were analyzed in order to determine tissue distribution of prothrombin expression and to determine if increases in liver prothrombin mRNA during development correlated with previously documented developmental increases in plasma prothrombin levels. Maternal tissues were also analyzed in order to determine if prothrombin mRNA levels varied due to gestational or postpartum influences. Northern analysis demonstrated that rat liver prothrombin mRNA levels increased several-fold late in gestation and reached maximal levels by 13 days after birth. Prothrombin mRNA was also expressed in diaphragm, stomach, intestine, kidney, spleen and adrenal tissues during development. In maternal tissues during pregnancy, prothrombin mRNA was expressed in liver, diaphragm, stomach, uterus and placenta. Prothrombin mRNA levels in each of these tissues that were positive by Northern analysis were quantitated by solution hybridization analysis. Between gestational day 18 and postnatal day 13, liver prothrombin mRNA levels increased from approx. 600 to 2100 molecules per cell (a 3.5-fold increase). In maternal liver during pregnancy, between day 18 and day 22, prothrombin mRNA levels increased from approx. 1800 to 2100 molecules per cell. Immediately after delivery, maternal liver prothrombin mRNA levels decreased to approx. 50% of preparturition levels. Prothrombin mRNA levels in placental tissue ranged from approx. 100 to 250 molecules per cell. In other fetal, postnatal and maternal tissues, prothrombin mRNA expression was less than 100 molecules per cell. These results demonstrate that the level and tissue-type expression of prothrombin mRNA varies in response to prenatal and postnatal influences.  相似文献   

14.
We evaluated the changes in mRNA expression of cytosolic phospholipase A(2)(cPLA(2)) and 15-hydroxyprostaglandin dehydrogenase (PGDH) in intrauterine and gestational tissues during mid-late murine pregnancy. Tissues (decidual caps, fetal membranes, and placentae, uterus, and cervix) were collected from pregnant mice at days 12, 14, 16, 18, and 19 (am and pm) of gestation. Total RNA was isolated and evaluated for cPLA(2)and PGDH expression by northern blot analysis normalized to GAPDH expression. Expression of mRNA for cPLA(2)increased in the placentae and decidual caps on day 18 and 19 pm, respectively. There was also increased expression for PGDH mRNA in the placenta and fetal membranes at the later stages of pregnancy. The tissue specific differences in expression of cPLA(2)and PGDH suggest that changes in enzymatic regulation of PG production and degradation may be crucial for the initiation of labour.  相似文献   

15.
16.
Folate deficiency in pregnancy is associated with neural tube defects, restricted fetal growth and fetal programming of diseases later in life. Fetal folate availability is dependent on maternal folate levels and placental folate transport capacity, mediated by two key transporters, Folate Receptor-α and Reduced Folate Carrier (RFC). We tested the hypothesis that intrauterine growth restriction (IUGR) is associated with decreased folate transporter expression and activity in isolated syncytiotrophoblast microvillous plasma membranes (MVM). Women with pregnancies complicated by IUGR (birth weight <3rd percentile, mean birth weight 1804±110 g, gestational age 35.7±0.61 weeks, n=25) and women delivering an appropriately-for gestational age infant (control group, birth weight 25th–75th centile, mean birth weight 2493±216 g, gestational age 33.9±0.95 weeks, n=19) were recruited and placentas were collected at delivery. MVM was isolated and folate transporter protein expression was measured using Western blot and transporter activity was determined using radiolabelled methyltetrahydrofolic acid and rapid filtration. Whereas the expression of FR-α was unaffected, MVM RFC protein expression was significantly decreased in the IUGR group (−34%, P<.05). IUGR MVM had a significantly lower folate uptake compared to the control group (−38%, P<.05). In conclusion, placental folate transport capacity is decreased in IUGR, which may contribute to the restricted fetal growth and intrauterine programming of childhood and adult disease. These findings suggest that continuation of folate supplementation in the second and third trimester is of particular importance in pregnancies complicated by IUGR.  相似文献   

17.
Involution and regeneration of the endometrium after parturition in the ewe, were studied by light- and electron microscopy. The luminal epithelium in intercaruncular regions of the endometrium remained intact at all stages, but degeneration and death of many glandular epithelial cells were observed on the day after parturition. Glandular regeneration had commenced by 8 d post partum, and the glands were substantially regenerated by 15 d. Caruncular epithelial cells on the maternal side of the placentomes, between the bases of the maternal septa, persisted during the period of degeneration of the foetal and maternal tissues of the placentomes. Epithelial cells from this source contributed to the regeneration of the caruncular epithelium following shedding of plaques of degenerate placental tissue from the caruncles, which commenced after 8 d and was completed before 31 d. Thus, ingrowth of epithelium from the edges of the caruncles, as previously proposed, was not the sole source of new caruncular epithelium. The additional source of regenerating epithelium identified here may account for the rapidity with which epithelium appears in the centres of some caruncles, several millimetres in diameter, during endometrial regeneration. However, in some caruncles, regeneration of the epithelium was not completed until after 31 d post partum.  相似文献   

18.
Cloning and sequencing of a cDNA amplified by RNA fingerprinting at the implantation site of pregnant rats revealed 80% similarity with H beta 58, previously shown to be essential for formation of the chorioallantoic placenta in the mouse. H beta 58 mRNA was detected in the endometrium of hormonally sensitized rats stimulated to undergo decidualization and in the contralateral uterine horns lacking a decidual stimulus, indicating that uterine expression of H beta 58 mRNA did not require decidualization or the presence of a blastocyst. Immunodetection in the early postimplantation uterus (Days 6-8 of pregnancy) showed H beta 58 localized in the luminal and glandular epithelia and some stromal cells. Decidual cells at Day 6 of pregnancy expressed H beta 58, and by Day 9 of pregnancy, the protein localized throughout the maternal decidua. The temporal and spatial distribution of H beta 58 in the developing chorioallantoic placenta was assessed at Days 10, 12, and 14 of pregnancy. Immunoreactive H beta 58 localized to erythroid cells within the developing fetal vasculature of the chorioallantoic primordia at Day 10 of pregnancy. By Day 12, the fetal vasculature extended into the placental labyrinth, and the erythroid stem cells continued to strongly express H beta 58. At Day 14 of pregnancy, immunoreactivity became evident in the trophoblast giant cells and syncytiotrophoblast of the fetal placenta. As the chorioallantoic placenta matured (Day 18), H beta 58 mRNA was 3.6-fold higher in the labyrinth compared with the junctional region. Stable cell lines (HRP/LRP) isolated from the rat labyrinthine placenta expressed H beta 58 mRNA and protein. The expression pattern of H beta maternal and fetal placental tissues and its early expression in fetal erythroid stem cells during formation and maturation of the chorioallantoic placenta suggest that H beta 58 plays key roles in the regulatory networks that control hematopoietic development and placentation.  相似文献   

19.
The expression of hepatic calcium-binding protein regucalcin mRNA in fetal rats was investigated. The alteration in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin cDNA (0.9 kb with complete open reading frame). Hepatic regucalcin mRNA levels were progressively increased with fetal development; the mRNA was clearly expressed at 15 and 21 days of pregnancy but only slightly at the 8 days. Meanwhile, -actin mRNA levels in the fetal liver were remarkable at 8 and 15 days of pregnancy. The fetal liver regucalcin mRNA levels at 15 days of pregnancy were significantly decreased by overnight-fasting of maternal rats. The oral administration of calcium chloride (50 mg Ca/100 g body weight) to maternal rats at 15 days of pregnancy caused a remarkable elevation (about 2 fold) of regucalcin mRNA levels in the fetal liver; this increase was seen 60 and 180 min after the calcium administration. After birth, regucalcin mRNA was increasingly expressed in the livers of newborn and weanling rats, while hepatic -actin mRNA expression was not appreciably altered with increasing ages. These findings demonstrate that the expression of hepatic regucalcin mRNA is increased with fetal development, and that the gene expression may be stimulated by the ingestion of dietary calcium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号