首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Ascidians are ecologically important components of marine ecosystems yet the ascidian microbiota remains largely unexplored beyond a few model species. We used 16S rRNA gene tag pyrosequencing to provide a comprehensive characterization of microbial symbionts in the tunic of 42 Great Barrier Reef ascidian samples representing 25 species. Results revealed high bacterial biodiversity (3 217 unique operational taxonomic units (OTU0.03) from 19 described and 14 candidate phyla) and the widespread occurrence of ammonia-oxidizing Thaumarchaeota in coral reef ascidians (24 of 25 host species). The ascidian microbiota was clearly differentiated from seawater microbial communities and included symbiont lineages shared with other invertebrate hosts as well as unique, ascidian-specific phylotypes. Several rare seawater microbes were markedly enriched (200–700 fold) in the ascidian tunic, suggesting that the rare biosphere of seawater may act as a conduit for horizontal symbiont transfer. However, most OTUs (71%) were rare and specific to single hosts and a significant correlation between host relatedness and symbiont community similarity was detected, indicating a high degree of host-specificity and potential role of vertical transmission in structuring these communities. We hypothesize that the complex ascidian microbiota revealed herein is maintained by the dynamic microenvironments within the ascidian tunic, offering optimal conditions for different metabolic pathways such as ample chemical substrate (ammonia-rich host waste) and physical habitat (high oxygen, low irradiance) for nitrification. Thus, ascidian hosts provide unique and fertile niches for diverse microorganisms and may represent an important and previously unrecognized habitat for nitrite/nitrate regeneration in coral reef ecosystems.  相似文献   

2.
The high biodiversity of coral reefs is attributable to the many invertebrate groups which live in symbiotic relationships with other reef organisms, particularly those which associate with the living coral habitat. However, few studies have examined the diversity and community structure of coral-dwelling invertebrates and how they vary among coral species. This study quantified the species richness and composition of animals associated with four common species of branching corals (Acropora nasuta, A. millepora, Pocillopora damicornis, and Seriatopora hystrix) at Lizard Island in the northern Great Barrier Reef. One hundred and seventy-eight nominal species from 12 different phyla were extracted across 50 replicate colonies of each coral host. A single coral colony, approximately 20 cm in diameter, harbored as many as 73 individuals and 24 species. There were substantial differences in invertebrate species composition among coral hosts of different families as well as genera. Twenty-seven species (15% of all taxa collected) were found on only one of the four different coral species, which may potentially indicate some level of specialization among coral hosts. The distinct assemblages on different coral species, and the presence of potential specialists, suggests invertebrate communities will be sensitive to the differential loss of branching coral species resulting from coral reef degradation.  相似文献   

3.
Long-term (millennial timescale) records of coral community structure can be developed from the analysis of corals preserved in radiometrically dated reef cores. Here, we present such a record (based on six cores) from Lugger Shoal, a turbid zone, nearshore reef on the inner-shelf of the central Great Barrier Reef. Lugger Shoal initiated growth ~800 cal yBP. It is constructed of large in situ Porites bommies, between which a framework of coral rubble (dominated by Acropora pulchra, Montipora mollis, Galaxea fascicularis and Cyphastrea serailia) has accumulated. Reef accretion occurred under conditions of net long-term fine-grained, terrigenous sediment accumulation, and with a coral community dominated throughout by a consistent, but low diversity, suite of coral taxa. This dataset supports recent suggestions that nearshore coral communities that establish themselves under conditions that are already close to the thresholds for coral survival may be resilient to water quality deteriorations associated with human activities.  相似文献   

4.
Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community—which is critical to the healthy functioning of the coral holobiont—is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model''s assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.  相似文献   

5.
Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.  相似文献   

6.
This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h−1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.  相似文献   

7.
The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem.  相似文献   

8.
Coral reefs are among the most diverse and productive ecosystems in the world. Most research has, however, focused on eukaryotes such as corals and fishes. Recently, there has been increasing interest in the composition of prokaryotes, particularly those inhabiting corals and sponges, but these have mainly focused on bacteria. There have been very few studies of coral reef Archaea, despite the fact that Archaea have been shown to play crucial roles in nutrient dynamics, including nitrification and methanogenesis, of oligotrophic environments such as coral reefs. Here, we present the first study to assess Archaea in four different coral reef biotopes (seawater, sediment, and two sponge species, Stylissa massa and Xestospongia testudinaria). The archaeal community of both sponge species and sediment was dominated by Crenarchaeota, while the seawater community was dominated by Euryarchaeota. The biotope explained more than 72 % of the variation in archaeal composition. The number of operational taxonomic units (OTUs) was highest in sediment and seawater biotopes and substantially lower in both sponge hosts. No “sponge-specific” archaeal OTUs were found, i.e., OTUs found in both sponge species but absent from nonhost biotopes. Despite both sponge species hosting phylogenetically distinct microbial assemblages, there were only minor differences in Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways. In contrast, most functional pathways differed significantly between microbiomes from sponges and nonhost biotopes including all energy metabolic pathways. With the exception of the methane and nitrogen metabolic pathway, all energy metabolic pathways were enriched in sponges when compared to nonhost biotopes.  相似文献   

9.
We investigated the degree to which component grains vary with depositional environment in sediments from three reef habitats from the Pleistocene (125?ka) Hato Unit of the Lower Terrace, Curaçao, Netherlands Antilles: windward reef crest, windward back reef, and leeward reef crest. The windward reef crest sediment is the most distinctive, dominated by fragments of encrusting and branching coralline red algae, coral fragments and the encrusting foraminiferan Carpenteria sp. Windward back reef and leeward reef crest sediments are more similar compositionally, only showing significant differences in relative abundance of coral fragments and Homotrema rubrum. Although lacking high taxonomic resolution and subject to modification by transport, relative abundance of constituent grain types offers a way of assessing ancient skeletal reef community composition, and one which is not limited to a single taxonomic group. The strong correlation between grain type and environment we found in the Pleistocene of Curaçao suggests that constituent grain analysis may be an effective tool in delineating Pleistocene Caribbean reef environments. However, it will not be a sufficient indicator where communities vary significantly within reef environments or where evolutionary and/or biogeographical processes lead to different relationships between community composition and reef environment. Detailed interpretation of geological, biological, and physical characteristics of the Pleistocene reefs of Curaçao reveals that the abundance of the single coral species, Acropora palmata, is not a good predictor of the ecological structure of the ancient reef coral communities. This coral was the predominant species in two of the three reef habitats (windward and leeward reef crest), but the taxonomic composition (based on species relative abundance data) of the reef coral communities was substantially different in these two environments. We conclude that qualitative estimates of coral distribution patterns (presence of a key coral species or the use of a distinctive coral skeletal architecture), when used as a component in a multi-component analysis of ancient reef environments, probably introduces minimal circular reasoning into quantitative paleoecological studies of reef coral community structure.  相似文献   

10.

Background

Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning.

Methodology/Principal Findings

Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but weak microbe-host specificity.

Conclusions/Significance

This study presents the first multi-scale survey of bacterial diversity in cold-water coral reefs, spanning a total of five observational levels including three spatial scales. It demonstrates that bacterial communities in cold-water coral reefs are structured by multiple factors acting at different spatial scales, which has fundamental implications for the monitoring of microbial diversity and function in those ecosystems.  相似文献   

11.
The density of recruits of scleractinian corals on settlement plates at Lord Howe Island, a small isolated sub-tropical island 630 km off the Australian coastline, was within the range of values reported for comparable studies on the Great Barrier Reef. However, there was a difference in the relative abundance of taxonomic groups, with recruitment at Lord Howe Island during the summer of 1990/91 dominated by corals from the Family Pocilloporidae, Family Poritidae, and sub-genus Acropora (Isopora) (in order of abundance). By contrast, on the Great Barrier Reef, recruits are generally predominantly species from the Family Acroporidae (other than the Acropora (Isopora) group). Both the recruits and the established coral communities at Lord Howe Island are dominanted by corals which release brooded planulae, as opposed to the pattern of mass-spawning with external fertilisation more typical of Great Barrier Reef corals. I hypothesise that the release of brooded planulae would be advantageous in an isolated reef community because (a) brooded larvae can travel large distances and survive the journey to the isolated reef and/or (b) brooded larvae have a shorter period before they are competent to settle and are therefore more likely to be retained on the parental reef once a population has been established.  相似文献   

12.
Coral-associated microbial communities from three coral species (Pocillopora damicornis, Acropora tenuis and Favites abdita) were examined every 3 months (January, March, June, October) over a period of 1 year on Ningaloo Reef, Western Australia. Tissue from corals was collected throughout the year and additional sampling of coral mucus and seawater samples was performed in January. Tissue samples were also obtained in October from P. damicornis coral colonies on Rottnest Island off Perth, 1200 km south of Ningaloo Reef, to provide comparisons between coral-microbial associates in different locations. The community structures of the coral-associated microorganisms were analysed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse microbial profiles among all the coral species sampled. Principal component analysis revealed that samples grouped according to time and not species, indicating that coral-microbial associations may be a result of environmental drivers such as oceanographic characteristics, benthic community structure and temperature. Tissue samples from P. damicornis at Rottnest Island revealed similarities in bacteria to the samples at Ningaloo Reef. This study highlights that coral-associated microbial communities are highly diverse; however, the complex interactions that determine the stability of these associations are not necessarily dependent on coral host specificity.  相似文献   

13.
The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebasti?o Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebasti?o Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens.  相似文献   

14.
Coral and sandstone reefs cover a significant part ofSri Lanka‘s continental shelf and contain incomparison unique reef structures. Despite this, reefsin this region of the northern Indian Ocean havereceived little research attention. In an attempt tobetter understand these ecosystems and their innatecharacter, this study describes the variety of reeftypes and habitats that are found in this area. Thestudy concentrated on four major reef areas: the BarReef Marine Sanctuary (BRMS), Kandakuliya Reefs,Talawila Reef, and Mampuri Reef. These reefs showedapparent differences in habitat structure in terms ofthe proportion coral cover, coral species compositionand structural complexity. Two reef types were presentwithin the continental shelf of BRMS: coral andsandstone patch-reefs. Acropora was the mostdominant coral genera however in total 118madreporarian species and 50 coral genera wererecorded in the sanctuary. Distinct habitats wereidentified within reef types including shallow reefflat, shallow patch reef, deep reef flat and Porites dome habitats for the coral-reef patcheswhile the sandstone-reef patches were divided intostructured and flat sandstone reef habitats.Kandakuliya Reef south of BRMS was by large dominatedby coral rubble. Talawila Reef and Mampuri Reef showedunique structures with the former being dominated bymassive corals and the latter mainly containingsandstone structures. In addition to factors such asbio-erosion, sedimentation, hydrodynamics, andrecruitment or colonisation processes, some reefs wereclearly under significant direct human impact whichappeared to play a dominant role in habitatstructuring. However, type and degree of humandisturbance varied among the reefs. Habitat alterationat Kandakuliya Reef was the result of intense fishingusing destructive fishing methods. Talawila Reef andMampuri Reef was also influenced by fishing activitiesthough reef structure seemed less affected. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
For coral reef fish with an obligate relationship to their habitat, like Pomacentrid damselfish, choosing a suitable home amongst the reef structure is key to survival. A surprisingly small number of studies have examined patterns in adult damselfish distributions compared to other ontogenetic phases. The aim of this study was to determine which reef and coral colony characteristics explained adult damselfish distribution patterns in a Red Sea reef. The characteristics investigated were reef type (continuous or patchy), coral species (seven species of Acropora), and coral morphology (coral size and branching density). The focal damselfish species were Dascyllus aruanus, D. marginatus, Chromis viridis, and C. flavaxilla. Occupancy (presence or absence of resident damselfish), group size and fish species richness were not significantly different between the seven Acropora species. However, within each coral species, damselfish were more likely to occupy larger coral colonies than smaller coral colonies. Occupancy rates were also higher in patchy reef habitats than in continuous sections of the reef, probably because average coral colony size was greater in patchy reef type. Fish group size increased significantly with coral colony volume and with larger branch spacing. Multi-species groups of fish commonly occurred and were increasingly likely with reduced branching density and increased coral size.  相似文献   

16.
For species with complex life histories such as scleractinian corals, processes occurring early in life can greatly influence the number of individuals entering the adult population. A plethora of studies have examined settlement patterns of coral larvae, mostly on artificial substrata, and the composition of adult corals across multiple spatial and temporal scales. However, relatively few studies have examined the spatial distribution of small (≤50 mm diameter) sexually immature corals on natural reef substrata. We, therefore, quantified the variation in the abundance, composition and size of juvenile corals (≤50 mm diameter) among 27 sites, nine reefs, and three latitudes spanning over 1000 km on Australia’s Great Barrier Reef. Overall, 2801 juveniles were recorded with a mean density of 6.9 (±0.3 SE) ind.m−2, with Acropora, Pocillopora, and Porites accounting for 84.1% of all juvenile corals surveyed. Size-class structure, orientation on the substrate and taxonomic composition of juvenile corals varied significantly among latitudinal sectors. The abundance of juvenile corals varied both within (6–13 ind.m−2) and among reefs (2.8–11.1 ind.m−2) but was fairly similar among latitudes (6.1–8.2 ind.m−2), despite marked latitudinal variation in larval supply and settlement rates previously found at this scale. Furthermore, the density of juvenile corals was negatively correlated with the biomass of scraping and excavating parrotfishes across all sites, revealing a potentially important role of parrotfishes in determining distribution patterns of juvenile corals on the Great Barrier Reef. While numerous studies have advocated the importance of parrotfishes for clearing space on the substrate to facilitate coral settlement, our results suggest that at high biomass they may have a detrimental effect on juvenile coral assemblages. There is, however, a clear need to directly quantify rates of mortality and growth of juvenile corals to understand the relative importance of these mechanisms in shaping juvenile, and consequently adult, coral assemblages.  相似文献   

17.
Coral zooxanthellae contain high concentrations of dimethylsulphoniopropionate (DMSP), the precursor of dimethylsulphide (DMS), an aerosol substance that could affect cloud cover, solar radiation and ocean temperatures. Acropora intermedia a dominant staghorn coral in the Indo-Pacific region, contain some of the highest concentrations of DMSP reported in the literature but no studies have shown that corals produce atmospheric DMS in situ and thus could potentially participate in sea surface temperature (SST) regulation over reefs; or how production varies during coral bleaching. We show that A. intermedia from the Great Barrier Reef (GBR) produces significant amounts of atmospheric DMS, in chamber experiments, indicating that coral reefs in this region could contribute to an “ocean thermostat” similar to that described for the western Pacific warm pool, where significantly fewer coral reefs have bleached during the last 25?years because of a cloud-SST feedback. However, when Acropora intermedia was stressed with higher light levels and seawater temperatures DMSP production, an indicator of zooxanthellae expulsion, increased markedly in the chamber, whilst atmospheric DMS emissions almost completely shut down. These results suggest that during increased light levels and seawater temperatures in the GBR coral shut-down atmospheric DMS aerosol production, potentially increasing solar radiation levels over reefs and exacerbating coral bleaching.  相似文献   

18.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

19.
The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.  相似文献   

20.
 Reef coral communities in a non-reef setting on shallow, flat hardgrounds were quantitatively sampled in Dubai Emirate (UAE, Southern Arabian Gulf) before and after a coral mass mortality in 1996. The coral fauna consisted of 34 scleractinian species before and 27 after the event, which removed virtually all Acropora. No alcyonacea were recorded. Five community types were identified and characterized by the dominant species: (A) a sparse Porites lutea community in sandy areas, (B) a dense Acropora clathrata community in areas with little sand, (C) a faviid community in muddy areas, (D) a Siderastrea savignyana community in sandy areas, and (E) a Porites compressa community, which built a framework in sandy areas. These communities are comparable to those described from other areas of the Gulf, where a stable pattern of community differentiation appears to exist. The spatial distribution and dynamics of the coral communities appears to be strongly influenced by mass mortality events recurring every 15 to 20 y. A combination of extreme water temperatures and high sedimentation/turbidity appear to be the major cause of mortality. Accepted: 13 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号