首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have investigated the oxidation of the reduced ubiquinol:cytochrome c reductase (bc1 complex) isolated from beef heart mitochondria. The oxidation of cytochrome c1 by both potassium ferricyanide and cytochrome c in the ascorbate-reduced bc1 complex is not a first-order process. This is taken as evidence that cytochrome c1 is in rapid equilibrium with the Rieske iron-sulphur center. Among the several inhibitors tested, only 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole and stigmatellin are seen to affect this redox equilibrium between the high-potential centers of the beef heart bc1 complex. The oxidation of cytochrome b by cytochrome c in both the succinate-reduced and the fully reduced bc1 complex is blocked by all the inhibitors tested. This inhibition occurs simultaneously with an acceleration in the oxidation of cytochrome c1, even after extraction of the endogenous ubiquinone which is present in the bc1 preparation. Almost complete extraction of ubiquinone from the bc1 complex has no effect upon the rapid phase of cytochrome b oxidation, nor does it alter the inhibition of cytochrome b oxidation by the various inhibitors. The oxidation of cytochrome b by exogenous ubiquinones is stimulated by myxothiazol and partially inhibited by antimycin. However, the addition of both these inhibitors together completely blocks the oxidation of cytochrome b by quinones. In contrast, the simultaneous addition of antimycin and myxothiazol has no such synergistic effect upon the oxidation of cytochrome b by cytochrome c. Our data show that intramolecular electron transfer from cytochrome(s) b to the Rieske iron-sulphur center can take place in the bc1 complex without involvement of endogenous ubiquinone-10. This electron pathway is sensitive to all the inhibitors of the enzyme.  相似文献   

2.
1. The sensitivity of ubiquinol:cytochrome c reductase to its most powerful inhibitors has been characterized in mitochondria from three ciliate and two trypanosome protozoans and compared with that in mitochondria of animals and plants. 2. Mitochondria of ciliates, particularly those of Tetrahymena pyriformis, are resistant to antimycin. 3. Mitochondria of trypanosomes are quite resistant to stigmatellin, as they exhibit a 40-fold higher titer than that in ciliate or animals mitochondria. 4. Both ciliates and trypanosomes are highly resistant to myxothiazol. 5. Correlations have been drawn between the natural resistance of the protozoan mitochondria to antimycin, stigmatellin and myxothiazol and peculiar features in the structure of their apocytochrome b, on the basis of an accurate alignment of the sequences of this protein.  相似文献   

3.
In this report we show that ubiquinone cytochrome c reductase (complex III) from isolated rat heart mitochondria when inhibited with antimycin A, produces a large amount of superoxide as measured by the chemiluminescent probe coelenterazine. When mitochondria are inhibited with myxothiazol or stigmatellin, there is no detectable formation of superoxide. The antimycin A-sensitive free radical production can be dramatically reduced using either myxothiazol or stigmatellin. This suggests that the antimycin A-sensitive generation of superoxides originates primarily from the Q(o) semiubiquinone. When manganese superoxide dismutase depleted submitochondrial particles (SMP) were inhibited with myxothiazol or stigmatellin, a large superoxide signal was observed. These two inhibitors likely increase the concentration of the Q(i) semiquinone at the N center. The antimycin A-sensitive signal can, in the case of both the mitochondria and the SMP, be dissipated by the addition of copper zinc superoxide dismutase, suggesting that the measured coelenterazine signal was a result of superoxide production. Taken together, this data suggests that free radicals generated from the Q(i) species are more effectively eliminated by MnSOD in intact mitochondria.  相似文献   

4.
Three rotenone-insensitive NADH dehydrogenases are present in the mitochondria of yeast Saccharomyces cerevisiae, which lack complex I. To elucidate the functions of these enzymes, superoxide production was determined in yeast mitochondria. The low levels of hydrogen peroxide (0.10 to 0.18 nmol/min/mg) produced in mitochondria incubated with succinate, malate, or NADH were stimulated 9-fold by antimycin A. Myxothiazol and stigmatellin blocked completely hydrogen peroxide formation with succinate or malate, indicating that the cytochrome bc(1) complex is the source of superoxide; however, these inhibitors only inhibited 46% hydrogen peroxide formation with NADH as substrate. Diphenyliodonium inhibited hydrogen peroxide formation (with NADH as substrate) by 64%. Superoxide formation, determined by EPR and acetylated cytochrome c reduction in mitochondria was stimulated by antimycin A, and partially inhibited by myxothiazol and stigmatellin. Proteinase K digestion of mitoplasts reduced 95% NADH dehydrogenase activity with a similar inhibition of superoxide production. Mild detergent treatment of the proteinase-treated mitoplasts resulted in an increase in NADH dehydrogenase activity due to the oxidation of exogenous NADH by the internal NADH dehydrogenase; however, little increase in superoxide production was observed. These results suggest that the external NADH dehydrogenase is a potential source of superoxide in S. cerevisiae mitochondria.  相似文献   

5.
In uncoupled pig-heart mitochondria the rate of the reduction of duroquinone by succinate in the presence of cyanide is inhibited by about 50% by antimycin. This inhibition approaches completion when myxothiazol is also added or British anti-Lewisite-treated (BAL-treated) mitochondria are used. If mitochondria are replaced by isolated succinate:cytochrome c oxidoreductase, the inhibition by antimycin alone is complete. The reduction of a plastoquinone homologue with an isoprenoid side chain (plastoquinone-2) is strongly inhibited by antimycin with either mitochondria or succinate:cytochrome c reductase. The reduction by succinate of plastoquinone analogues with an n-alkyl side chain in the presence of mitochondria is inhibited neither by antimycin nor by myxothiazol, but is sensitive to the combined use of these two inhibitors. On the other hand, the reduction of the ubiquinone homologues Q2, Q4, Q6 and Q10 and an analogue, 2,3-dimethoxyl-5-n-decyl-6-methyl-1,4-benzoquinone, is not sensitive to any inhibitor of QH2:cytochrome c reductase tested or their combined use, either in normal or BAL-treated mitochondria or in isolated succinate:cytochrome c reductase. It is concluded that quinones with a ubiquinone ring can be reduced directly by succinate:Q reductase, whereas those with a plastoquinone ring can not. Reduction of the latter compounds requires participation of either center i or center o (Mitchell, P. (1975) FEBS Lett. 56, 1-6) or both, of QH2:cytochrome c oxidoreductase. It is proposed that a saturated side chain promotes, while an isoprenoid side chain prevents reduction of these compounds at center o.  相似文献   

6.
The involvement of a quinone in the antimycin A-insensitive electron transfer from NADH-dehydrogenase to cytochrome c via the alternative respiratory chain of Candida parapsilosis, by-passing complex II, has been studied. After a partial extraction of quinones, the residual respiration was fully antimycin-A-sensitive, but reincorporation of the organic extract partially restored an antimycin A-insensitive respiration. Analysis of quinone content by HPLC, after purification by thin-layer chromatography, evidenced another quinone species in a very low amount. Myxothiazol and stigmatellin were shown to inhibit the alternative pathway but at a higher concentration than required to inhibit the classical pathway. Cytochrome spectra analysis showed that, in the presence of high myxothiazol concentrations, cytochromes c and aa3 were not reduced, while they were in the presence of antimycin A. It is suggested that the secondary pathway of C. parapsilosis involved a specific quinone pool which can be displaced from its binding site by high concentrations of myxothiazol or analogous compounds.  相似文献   

7.
ABSTRACT A study of the effect of respiratory inhibitors on O2 uptake of Euglena gracilis mitochondria, isolated from cells grown in the presence of cyanide or with ethanol as carbon source, was undertaken. The contents of cytochrome c oxidase and alternative oxidase were also determined. Inhibition of respiration by antimycin and cyanide was only partial and it was dependent on the oxidizable substrate used. Succinate oxidation was the most sensitive to cyanide whereas lactate oxidation was the most resistant. Cell growth in the presence of cyanide or with ethanol as carbon source brought about an enhanced content of alternative oxidase without a concomitant increase in cytochrome aa3 content. However, a correlation between cyanide-resistant respiration and alternative oxidase content was not found. Analysis of heme types in mitochondrial membranes revealed the absence of heme O. The data suggest the presence of an inducible alternative oxidase in Euglena mitochondria which has high resistance to cyanide and contains heme B. A close relationship between Euglena alternative oxidase and bacterial quinol oxidases containing B-type heme is proposed.  相似文献   

8.
We have obtained evidence for conformational communication between ubiquinol oxidation (center P) and ubiquinone reduction (center N) sites of the yeast bc1 complex dimer by analyzing antimycin binding and heme bH reduction at center N in the presence of different center P inhibitors. When stigmatellin was occupying center P, concentration-dependent binding of antimycin occurred only to half of the center N sites. The remaining half of the bc1 complex bound antimycin with a slower rate that was independent of inhibitor concentration, indicating that a slow conformational change needed to occur before half of the enzyme could bind antimycin. In contrast, under conditions where the Rieske protein was not fixed proximal to heme bL at center P, all center N sites bound antimycin with fast and concentration-dependent kinetics. Additionally, the extent of fast cytochrome b reduction by menaquinol through center N in the presence of stigmatellin was approximately half of that observed when myxothiazol was bound at center P. The reduction kinetics of the bH heme by decylubiquinol in the presence of stigmatellin or myxothiazol were also consistent with a model in which fixation of the Rieske protein close to heme bL in both monomers allows rapid binding of ligands only to one center N. Decylubiquinol at high concentrations was able to abolish the biphasic binding of antimycin in the presence of stigmatellin but did not slow down antimycin binding rates. These results are discussed in terms of half-of-the-sites activity of the dimeric bc1 complex.  相似文献   

9.
In the presence of cyanide and various respiratory substrates (succinate or pyruvate + malate) addition of high concentrations of lucigenin (400 microM; Luc2+) to rat liver mitochondria can induce a short-term flash of high amplitude lucigenin-dependent chemiluminescence (LDCL). Under conditions of cytochrome oxidase inhibition by cyanide the lucigenin-induced cyanide-resistant respiration (with succinate as substrate) was not inhibited by uncouplers (FCCP) and oligomycin. Increase in transmembrane potential (Deltaphi) value by stimulating F0F1-ATPase functioning (induced by addition of MgATP to the incubation medium) caused potent stimulation of the rate of cyanide-resistant respiration. At high Deltaphi values (in the presence of MgATP) cyanide resistant respiration of mitochondria in the presence of succinate or malate with pyruvate was insensitive to tenoyltrifluoroacetone (TTFA) or rotenone, respectively. However, in both cases respiration was effectively inhibited by myxothiazol or antimycin A. Mechanisms responsible for induction of LDCL and cyanide resistant mitochondrial respiration differ. In contrast to cyanide-resistant respiration, generation of LDCL signal, that was suppressed only by combined addition of Complex III inhibitors, antimycin A and myxothiazol, is a strictly potential-dependent process. It is observed only under conditions of high Deltaphi value generated by F0F1-ATPase functioning. The data suggest lucigenin-induced intensive generation of superoxide anion in mitochondria. Based on results of inhibitor analysis of cyanide-resistant respiration and LDCL, a two-stage mechanism of autooxidizable lucigenin cation-radical (Luc*+) formation in the respiratory chain is proposed. The first stage involves two-electron Luc2+ reduction by Complexes I and II. The second stage includes one-electron oxidation of reduced lucigenin (Luc(2e)). Reactions of Luc(2e) oxidation involve coenzyme Q-binding sites of Complex III. This results in formation of autooxidizable Luc*+ and superoxide anion generation. A new scheme for lucigenin-dependent electron pathways is proposed. It includes formation of fully reduced form of lucigenin and two-electron-transferring shunts of the respiratory chain. Lucigenin-induced activation of superoxide anion formation in mitochondria is accompanied by increase in ion permeability of the inner mitochondrial membrane.  相似文献   

10.
The kinetic and circular dichroic properties of two yeast mutants that are resistant towards specific inhibitors of the mitochondrial cytochrome bc1 complex have been characterized. Both of these mutants have an altered cytochrome b gene in which aromatic residues are exchanged with non-polar residues in a highly conserved region of the protein. The mutant resistant to myxothiazol and mucidin that contains the substitution Phe129----Leu is not greatly affected either in its ubiquinol:cytochrome c reductase or in the spectral properties of cytochrome b. On the other hand, the mutant resistant to stigmatellin that contains the substitution Ile147----Phe shows a large decrease of the catalytic efficiency for ubiquinol and of the maximal turnover of its reductase activity. This stigmatellin mutant also shows an altered circular-dichroic spectrum of the low-potential haem of cytochrome b. This study provides biochemical and biophysical information for identifying a region in mitochondrial cytochrome b that may fulfill a crucial role in the binding of ubiquinol to the bc1 complex. The results are discussed also in terms of the structural model of cytochrome b having a core of four transmembrane helices.  相似文献   

11.
Flash-induced redox changes of b-type and c-type cytochromes have been studied in chromatophores from the aerobic photosynthetic bacterium Roseobacter denitrificans under redox-controlled conditions. The flash-oxidized primary donor P+ of the reaction center (RC) is rapidly re-reduced by heme H1 (Em,7 = 290 mV), heme H2 (Em,7 = 240 mV) or low-potential hemes L1/L2 (Em,7 = 90 mV) of the RC-bound tetraheme, depending on their redox state before photoexcitation. By titrating the extent of flash-induced low-potential heme oxidation, a midpoint potential equal to -50 mV has been determined for the primary quinone acceptor QA. Only the photo-oxidized heme H2 is re-reduced in tens of milliseconds, in a reaction sensitive to inhibitors of the bc1 complex, leading to the concomitant oxidation of a cytochrome c spectrally distinct from the RC-bound hemes. This reaction involves cytochrome c551 in a diffusional process. Participation of the bc1 complex in a cyclic electron transfer chain has been demonstrated by detection of flash-induced reduction of cytochrome b561, stimulated by antimycin and inhibited by myxothiazol. Cytochrome b561, reduced upon flash excitation, is re-oxidized slowly even in the absence of antimycin. The rate of reduction of cytochrome b561 in the presence of antimycin increases upon lowering the ambient redox potential, most likely reflecting the progressive prereduction of the ubiquinone pool. Chromatophores contain approximately 20 ubiquinone-10 molecules per RC. At the optimal redox poise, approximately 0.3 cytochrome b molecules per RC are reduced following flash excitation. Cytochrome b reduction titrates out at Eh < 100 mV, when low-potential heme(s) rapidly re-reduce P+ preventing cyclic electron transfer. Results can be rationalized in the framework of a Q-cycle-type model.  相似文献   

12.
The effect of a series of respiratory inhibitors on the oxidation of NADH in state 4 and state 3 conditions was studied with corn shoot mitochondria. Comparisons were made using malate and succinate as substrates. The inhibitors, rotenone, amytal, antimycin A and cyanide, inhibited oxidation of NADH in state 3 but rotenone and amytal did not inhibit oxidation in state 4. The inhibition by antimycin A was partially overcome by the presence of cytochrome c. The results indicate the presence of alternative pathways available for NADH oxidation depending on the metabolic condition of the mitochondria. Under state 4 conditions, NADH oxidation bypasses the amytal and rotenone sensitive sites but under state 3 conditions a component of the NADH respiration appears to be oxidized by an internal pathway which is sensitive to these inhibitors. Still a third pathway for NADH oxidation is dependent on the addition of cytochrome c and is insensitive to antimycin A. Succinate oxidation was sensitive to cyanide and antimycin A under both state 4 and state 3 conditions as well as amytal and rotenone under state 3 conditions but was not inhibited by amytal and rotenone under state 4 conditions. Malate oxidation was inhibited by cyanide, rotenone and amytal under both state 4 and state 3 conditions. Antimycin A inhibited state 3 but did not appreciably alter state 4 rates of malate oxidation. With all substrates tested inhibition by antimycin A was greatly facilitated by preswelling the mitochondria for 10 min. This was interpreted to indicate that swelling increases the accessibility of antimycin A to the site of inhibition.  相似文献   

13.
The cytochrome bf complex, which links electron transfer from photosystem II to photosystem I in oxygenic photosynthesis, has not been amenable to site-directed mutagenesis in cyanobacteria. Using the cyanobacterium Synechococcus sp. PCC 7002, we have successfully modified the cytochrome b(6) subunit of the cytochrome bf complex. Single amino acid substitutions in cytochrome b(6) at the positions D148, A154, and S159 revealed altered binding of the quinol-oxidation inhibitors 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), myxothiazol, and stigmatellin. Cytochrome bf and mitochondrial-type cytochrome bc(1) complexes are closely related in structure and function but exhibit quite different inhibitor specificities. Cytochrome bf complexes are insensitive to myxothiazol and sensitive to DBMIB, whereas cytochrome bc(1) complexes are sensitive to myxothiazol and relatively insensitive to DBMIB. Measurements of flash-induced and steady-state electron transfer rates through the cytochrome bf complex revealed increased resistance to DBMIB in the mutants A154G and S159A, increased resistance to stigmatellin in A154G, and created sensitivity to myxothiazol in the mutant D148G. Therefore these mutations made the cytochrome bf complex more like the cytochrome bc(1) complex. This work demonstrates that cyanobacteria can be used as effective models to investigate structure-function relationships in the cytochrome bf complex.  相似文献   

14.
Biochemical analyses of Rubrivivax gelatinosus membranes have revealed that the cytochrome bc(1) complex is highly resistant to classical inhibitors including myxothiazol, stigmatellin, and antimycin. This is the first report of a strain exhibiting resistance to inhibitors of both catalytic Q(0) and Q(i) sites. Because the resistance to cytochrome bc(1) inhibitors is primarily related to the cytochrome b primary structure, the petABC operon encoding the subunits of the cytochrome bc(1) complex of Rubrivivax gelatinosus was sequenced. In addition to homologies to the corresponding proteins from other organisms, the deduced amino acid sequence of the cytochrome b polypeptide shows (i) an E303V substitution in the highly conserved PEWY loop involved in quinol/stigmatellin binding, (ii) other substitutions that could be involved in resistance to cytochrome bc(1) inhibitors, and (iii) 14 residues instead of 13 between the histidines in helix IV that likely serve as the second axial ligand to the b(H) and b(L) hemes, respectively. These characteristics imply different functional properties of the cytochrome bc(1) complex of this bacterium. The consequences of these structural features for the resistance to inhibitors and for the properties of R. gelatinosus cytochrome bc(1) are discussed with reference to the structure and function of the cytochrome bc(1) complexes from other organisms.  相似文献   

15.
Cells of the E3-24 mutant of the strain D273-10B of Saccharomyces cerevisiae, grown in a fermentable substrate not showing catabolite repression of respiration (2% galactose), are able to respire, in spite of their ubiquinone deficiency in mitochondrial membranes. Mitochondria isolated from these mutant cells oxidize exogenous NADH through a pathway insensitive to antimycin A but inhibited by cyanide. Addition of methanolic solutions of ubiquinone homologs stimulates the oxidation rate and restores antimycin A sensitivity in both isolated mitochondria and whole cells. Mersalyl preincubation of isolated mitochondria inhibits both NADH oxidation and NADH-cytochrome c oxido-reductase activity (assayed in the presence of cyanide) with the same pattern. Electrons resulting from the oxidation of exogenous NADH reduce both cytochrome b5 and endogenous cytochrome c. The increase in ionic strength stimulates NADH oxidation, which is also coupled to the ATP synthesis with an ATP/O ratio similar to that obtained with ascorbate plus N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) as substrate. The effect of cyanide on these activities and on NADH-induced endogenous cytochrome c reduction is also comparable. These results support the existence in vivo and in isolated mitochondria of a energy-conserving pathway for the oxidation of cytoplasmatic NADH not related to the dehydrogenases of the inner membrane, the ubiquinone, and the b-c1 complex, but involving a cytochrome c shuttle between the NADH-cytochrome c reductase of the outer membrane and cytochrome oxidase in the inner membrane.  相似文献   

16.
Membrane fragments isolated from the aerobic phototrophic bacterium Roseobacter denitrificans were examined. Ninety-five percent of the total NADH-dependent oxidative activity was inhibited either by antimycin A or myxothiazol, two specific inhibitors of the cytochrome bc1 complex, which indicates that the respiratory electron transport chain is linear. In agreement with this finding, light-induced oxygen uptake, an electron transport activity catalyzed by the "alternative quinol oxidase pathway" in membranes of several facultative phototrophic species, was barely detectable in membranes of Rsb. denitrificans. Redox titrations at 561-575 nm, 552-540 nm, and 602-630 nm indicated the presence of three b-type cytochromes (Em,7 of +244 +/- 8, +24 +/- 3, -163 +/- 11 mV), four c-type cytochromes (Em,7 of +280 +/- 10, +210 +/- 5, +125 +/- 8, and 20 +/- 3 mV) and two a-type cytochromes (Em,7 of +335 +/- 15, +218 +/- 18 mV). The latter two a-type hemes were shown to be involved in cytochrome c oxidase activity, which was inhibited by both cyanide (I50 = 2 microM) and azide (I50 = 1 mM), while a soluble cytochrome c (c551, Em,7 = +217 +/- 2 mV) was shown to be the physiological electron carrier connecting the bc1 complex to the cytochrome c oxidase. A comparison of the ATP synthesis generated by continuous light in membranes of Rsb. denitrificans and Rhodobacter capsulatus showed that in both bacterial species photophosphorylation requires a membrane redox poise at the equilibrium (Eh > or = +80 < or = +140 mV), close to the oxidation-reduction potential of the ubiquinone pool. These data, taken together, suggest that, although the photosynthetic apparatus of Rsb. denitrificans is functionally similar to that of typical anoxygenic phototrophs, e.g. Rba. capsulatus, the in vivo requirement of a suitable redox state at the ubiquinone pool level restricts the growth capacity of Rsb. denitrificans to oxic conditions.  相似文献   

17.
L Clejan  D S Beattie 《Biochemistry》1986,25(24):7984-7991
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase but had comparable amounts of cytochromes b and c1 as wild-type mitochondria. Addition of succinate to the mutant mitochondria resulted in a slight reduction of cytochrome b; however, the subsequent addition of antimycin resulted in a biphasic reduction of cytochrome b, leading to reduction of 68% of the total dithionite-reducible cytochrome b. No "red" shift in the absorption maximum was observed, and no cytochrome c1 was reduced. The addition of either myxothiazol or alkylhydroxynaphthoquinone blocked the reduction of cytochrome b observed with succinate and antimycin, suggesting that the reduction of cytochrome b-562 in the mitochondria lacking coenzyme Q may proceed by a pathway involving cytochrome b at center o where these inhibitors block. Cyanide did not prevent the reduction of cytochrome b by succinate and antimycin the the mutant mitochondria. These results suggest that the succinate dehydrogenase complex can transfer electrons directly to cytochrome b in the absence of coenzyme Q in a reaction that is enhanced by antimycin. Reduced dichlorophenolindophenol (DCIP) acted as an effective bypass of the antimycin block in complex III, resulting in oxygen uptake with succinate in antimycin-treated mitochondria. By contrast, reduced DCIP did not restore oxygen uptake in the mutant mitochondria, suggesting that coenzyme Q is necessary for the bypass. The addition of low concentrations of DCIP to both wild-type and mutant mitochondria reduced with succinate in the presence of antimycin resulted in a rapid oxidation of cytochrome b perhaps by the pathway involving center o, which does not require coenzyme Q.  相似文献   

18.
The effects of specific inhibitors of respiratory chain, F(o)F(1)ATP synthase and uncouplers of oxidative phosphorylation on survival of carcinoma HeLa cells and on the structure of mitochondria in the cells were studied. The inhibitors of respiration (piericidin, antimycin, myxothiazol), the F(1)-component of ATP synthase (aurovertin) and uncouplers (DNP, FCCP) did not affect viability of HeLa cells, apoptosis induced by TNF or staurosporin and the anti-apoptotic action of Bcl-2. Apoptosis was induced by combined action of respiratory inhibitors and uncouplers indicating possible pro-apoptotic action of reactive oxygen species (ROS) generated by mitochondria. Short-term incubation of HeLa cells with the mitochondrial inhibitors and 2-deoxyglucose followed by 24-48 h recovery resulted in massive apoptosis. Apoptosis correlated to transient (3-4 h) and limited (60-70%) depletion of ATP. More prolonged or more complete transient ATP depletion induced pronounced necrosis. The inhibitors of respiration and uncouplers caused fragmentation of tubular mitochondria and formation of small round bodies followed by swelling. These transitions were not accompanied with release of cytochrome c into the cytosol and were fully reversible. The combined effect of respiratory inhibitors and uncouplers developed more rapidly indicating possible involvement of ROS generated by mitochondria. More prolonged (48-72 h) incubation with this combination of inhibitors caused clustering and degradation of mitochondria.  相似文献   

19.
ATP synthesis during exogenous NADH oxidation. A reappraisal   总被引:1,自引:0,他引:1  
This paper reports a reinvestigation on the pathway for mitochondrial oxidation of exogenous NADH and on the related ATP synthesis, first reported 30 years ago (Lehninger, A.L. (1951) J. Biol. Chem. 190, 345-359). NADH oxidation, both in intact and in water-treated mitochondria, is 90% inhibited by mersalyl, an inhibitor of the outer membrane NADH-cytochrome b5 reductase, and 10% inhibited by rotenone. The mersalyl-sensitive, but not the rotenone-sensitive, portion of NADH oxidation is stimulated by exogenous cytochrome c. Part of ATP synthesis is independent of exogenous NADH and cytochrome c, and is inhibited by rotenone and antimycin A, and is therefore due to oxidation of endogenous substrates. Another part of ATP synthesis is dependent on exogenous NADH and cytochrome c, is insensitive to rotenone and antimycin A, and is due to operation of cytochrome oxidase. It is concluded that (i) oxidation of exogenous NADH in the presence of cytochrome c proceeds mostly through NADH-cytochrome b5 reductase and cytochrome b5 on the outer membrane and then through cytochrome oxidase via the cytochrome c shuttle, and (ii) ATP synthesis during oxidation of exogenous NADH is partly due to oxidation of endogenous substrates and partly to operation of cytochrome oxidase receiving electrons from the outer membrane via cytochrome c.  相似文献   

20.
The new antibiotic stigmatellin, obtained from the myxobacterium Stigmatella aurantiaca, was found to block the electron flow in the respiratory chain of bovine heart submitochondrial particles at the site of the cytochrome b-c1 segment. Its inhibitory potency was identical with that of antimycin and myxothiazol, and like these antibiotics, stigmatellin caused a shift in the spectrum of reduced cytochrome b. Difference spectroscopic studies with the three inhibitors in various combinations indicated that the binding site of stigmatellin was different from that of antimycin, but more or less identical with that of myxothiazol. Experiments with 14 synthesized derivatives of stigmatellin showed that good inhibitory activity can be expected only if the side chain was kept relatively lipophilic, and the keto and the hydroxy groups of the chromone system were left intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号