首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions.  相似文献   

2.
Microbial degradation is the only sustainable component of natural attenuation in contaminated groundwater environments, yet its controls, especially in anaerobic aquifers, are still poorly understood. Hence, putative spatial correlations between specific populations of key microbial players and the occurrence of respective degradation processes remain to be unraveled. We therefore characterized microbial community distribution across a high-resolution depth profile of a tar oil-impacted aquifer where benzene, toluene, ethylbenzene, and xylene (BTEX) degradation depends mainly on sulfate reduction. We conducted depth-resolved terminal restriction fragment length polymorphism fingerprinting and quantitative PCR of bacterial 16S rRNA and benzylsuccinate synthase genes (bssA) to quantify the distribution of total microbiota and specific anaerobic toluene degraders. We show that a highly specialized degrader community of microbes related to known deltaproteobacterial iron and sulfate reducers (Geobacter and Desulfocapsa spp.), as well as clostridial fermenters (Sedimentibacter spp.), resides within the biogeochemical gradient zone underneath the highly contaminated plume core. This zone, where BTEX compounds and sulfate—an important electron acceptor—meet, also harbors a surprisingly high abundance of the yet-unidentified anaerobic toluene degraders carrying the previously detected F1-cluster bssA genes (C. Winderl, S. Schaefer, and T. Lueders, Environ. Microbiol. 9:1035-1046, 2007). Our data suggest that this biogeochemical gradient zone is a hot spot of anaerobic toluene degradation. These findings show that the distribution of specific aquifer microbiota and degradation processes in contaminated aquifers are tightly coupled, which may be of value for the assessment and prediction of natural attenuation based on intrinsic aquifer microbiota.  相似文献   

3.
Natural attenuation of the mono‐aromates benzene, toluene, ethylbenzene and xylene occurs under iron‐reducing conditions in a leachate‐contaminated aquifer near the Banisveld landfill, the Netherlands. The diversity of mono‐aromate‐degrading microorganisms was studied by targeting functional genes encoding benzylsuccinate synthase α‐subunit (bssA) and 6‐oxocyclohex‐1‐ene‐1‐carbonyl‐CoA hydrolase (bamA). Sixty‐four bssA and 188 bamA variants were sequenced from groundwater sampled along the pollution plume in 1999 and 2004. Species containing bssA sequences closest affiliated (> 91%) with the betaprotebacterium Georgfuchsia toluolica were the dominant alkylbenzene degraders (89% of bssA sequences). bssA genes were found at more than 10‐fold lower copy numbers than bamA genes, of which only a small fraction (< 2%) was closely related to the genes of Georgfuchsia. bamA gene diversity was high and bamA‐based community composition was primarily affected by dissolved organic carbon (DOC) and ferrous iron concentrations. bamA sequences closest related to Geobacteraceae were dominantly (43.2%) observed and the presence of Geobacteraceae‐related bamA sequences was associated with DOC. Our results indicate a key role for specialized Georgfuchsia spp. in the degradation of alkylbenzenes, whereas Geobacteraceae are involved in degradation of aromatics other than toluene and xylene.  相似文献   

4.
Groundwater contamination by the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a global problem. Israel’s coastal aquifer was contaminated with RDX. This aquifer is mostly aerobic and we therefore sought aerobic bacteria that might be involved in natural attenuation of the compound in the aquifer. RDX-degrading bacteria were captured by passively sampling the indigenous bacteria onto sterile sediments placed within sampling boreholes. Aerobic RDX biodegradation potential was detected in the sediments sampled from different locations along the plume. RDX degradation with the native sampled consortium was accompanied by 4-nitro-2,4-diazabutanal formation. Two bacterial strains of the genus Rhodococcus were isolated from the sediments and identified as aerobic RDX degraders. The xplA gene encoding the cytochrome P450 enzyme was partially (~500 bp) sequenced from both isolates. The obtained DNA sequences had 99% identity with corresponding gene fragments of previously isolated RDX-degrading Rhodococcus strains. RDX degradation by both strains was prevented by 200 μM of the cytochrome P450 inhibitor metyrapone, suggesting that cytochrome P450 indeed mediates the initial step in RDX degradation. RDX biodegradation activity by the T7 isolate was inhibited in the presence of nitrate or ammonium concentrations above 1.6 and 5.5 mM, respectively (100 mg l−1) while the T9N isolate’s activity was retarded only by ammonium concentrations above 5.5 mM. This study shows that bacteria from the genus Rhodococcus, potentially degrade RDX in the saturated zone as well, following the same aerobic degradation pathway defined for other Rhodococcus species. RDX-degrading activity by the Rhodococcus species isolate T9N may have important implications for the bioremediation of nitrate-rich RDX-contaminated aquifers.  相似文献   

5.
The potential of hydrocarbon biodegradation in marine sediments was determined through the detection of a functional biomarker, the bssA gene, coding for benzylsuccinate synthase, the key enzyme of anaerobic toluene degradation. Eight bssA clone libraries (409 sequences) were constructed from polluted sediments affected by the Prestige oil spill in the Atlantic Islands National Park and from hydrocarbon-amended sediment microcosms in Mallorca. The amplified products and database-derived bssA-like sequences grouped into four major clusters, as determined by phylogenetic reconstruction, principal coordinate analysis (PCoA), and a subfamily prediction tool. In addition to the classical bssA sequences that were targeted, we were able to detect sequences homologous to the naphthylmethylsuccinate synthase gene (nmsA) and the alkylsuccinate synthase gene (assA), the bssA homologues for anaerobic 2-methylnaphthalene and alkane degradation, respectively. The detection of bssA-like variants was determined by the persistence and level of pollution in the marine samples. The observed level of gene diversity was lower in the Mallorca sediments, which were dominated by assA-like sequences. In contrast, the Atlantic Islands samples, which were highly contaminated with methylnaphthalene-rich crude oil, showed a high proportion of nmsA-like sequences. Some of the detected genes were phylogenetically related to Deltaproteobacteria communities, previously described as the predominant hydrocarbon degraders at these sites. Differences between all detected bssA-like genes described to date indicate separation between marine and terrestrial sequences and further subgrouping according to taxonomic affiliation. Global analysis suggested that bssA homologues appeared to cluster according to substrate specificity. We observed undetected divergent gene lineages of bssA homologues, which evidence the existence of new degrader groups in these environments.  相似文献   

6.
Lindane or γ- hexachlorocyclohexane (γ-HCH) is a chlorinated pesticide and its toxic effects on biota necessitate its removal. Microbial degradation is an important process for pesticide bioremediation and the role of soil fungi in recycling of organic matter prompted us to study the biodegradation of lindane using fungi. This study aims at enrichment, isolation and screening of soil fungi capable of metabolizing lindane. Two Fusarium species (F. poae and F. solani) isolated from the pesticide contaminated soil showed better growth on the plates supplemented with lindane as a sole carbon source, when compared with the growth performance of other fungal isolates from the same contaminated soil. However, ANOVA revealed a significant difference in fungal biomass production in both F. poae (F = 22.02; N = 15; P < 0.001) and F. solani (F = 268.75; N = 15; P < 0.001) across different lindane concentrations (0–600 μg ml−1). Growth of both Fusarium sp. was maximum at a lindane concentration of 100 μg ml−1, while minimum at 600 μg ml−1 concentrations. Results on the time dependent release of chlorine by the Fusarium strains in the presence of various concentration of lindane showed the highest mineralization of the pesticide on 10th day of incubation. Time dependent variations in the release of chlorine from 1st to 10th day by both the selected fungal strains were found to be statistically significant. A significant positive relationship exists between fungal biomass increase and chlorine release existed for both F. solani (R2 = 0.960) and F. poae (R2 = 0.628). The results of gas chromatograph analysis of γ- HCH confirmed the biodegradation and utilization of γ- HCH by F. poae and F. solani. The data on lindane degradation by the two fungal strains demonstrated that the biodegradation of lindane by F. solani (59.4%) was slightly higher than that by the F. poae (56.7%).  相似文献   

7.
Different bioremediation techniques (natural attenuation, biostimulation and bioaugmentation) in contaminated soils with two oily sludge concentrations (1.5% and 6.0%) in open and closed microcosms systems were assessed during 90 days. The results showed that the highest biodegradation rates were obtained in contaminated soils with 6% in closed microcosms. Addition of microbial consortium and nutrients in different concentrations demonstrated higher biodegradation rate of total petroleum hydrocarbons (TPH) than those of the natural attenuation treatment. Soils treated in closed microcosms showed highest removal rate (84.1 ± 0.9%) when contaminated at 6% and bacterial consortium and nutrients in low amounts were added. In open microcosms, the soil contaminated at 6% using biostimulation with the highest amounts of nutrients (C:N:P of 100:10:1) presented the highest degradation rate (78.7 ± 1.3%). These results demonstrate that the application of microbial consortium and nutrients favored biodegradation of TPH present in oily sludge, indicating their potential applications for treatment of the soils impacted with this important hazardous waste.  相似文献   

8.
Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.  相似文献   

9.
Toluene dioxygenase (TDO) is ubiquitous in nature and has a broad substrate range, including benzene, toluene, ethylbenzene and xylenes (BTEX). Pseudomonas putida F1 (PpF1) induced on toluene is known to produce indigo from indole through the activity of TDO. In this work, a spectrophotometric assay previously developed to measure indole to indigo production rates was modified to characterize the effects of various ethanol concentrations on toluene aerobic biodegradation activity and assess catabolite repression of TDO. Indigo production rate by cells induced on toluene alone was 0.0012 ± 0.0006 OD610 min−1. The presence of ethanol did not fully repress TDO activity when toluene was also available as a carbon source. However, indigo production rates by PpF1 grown on ethanol:toluene mixtures (3:1 w/w) decreased by approximately 50%. Overall, the proposed spectrophotometric assay is a simple approach to quantify TDO activity, and demonstrates how the presence of ethanol in groundwater contaminated with reformulated gasoline is likely to interfere with naturally occurring microorganisms from fully expressing their aerobic catabolic potential towards hydrocarbons bioremediation.  相似文献   

10.
The study investigates two functional genes for toluene degradation across three redox conditions (nitrate and sulfate amended and methanogenic). The genes targeted include benzylsuccinate synthase α-subunit (bssA) and a gene recently identified as being a strong indicator of anaerobic aromatic degradation, called 6-oxocylcohex-1-ene-1-carbonyl-CoA hydrolase (bamA). In all, sixteen different anaerobic toluene degrading microcosms were investigated using several primers sets targeting bssA and one primer set targeting bamA. One bssA primer set (7772f/8546r) was the most successful in producing a strong amplicon (eight from sixteen) with the other bssA primers sets producing strong amplicons in six or less samples. In contrast, the bamA primer set (bam-sp9 and bam-asp1) produced a strong amplicon in DNA extracted from all except one microcosm. Partial bssA and bamA sequences were obtained for a number of samples and compared to those available in GenBank. The partial bssA sequences (from nitrate amended and methanogenic microcosms) were most similar to Thauera sp. DNT-1, Thauera aromatica, Aromatoleum aromaticum EbN1 and bssA clones from a study involving sulfate reducing toluene degradation. The bamA sequences obtained could be placed into five previously defined clades (bamA-clade 1, Georgfuchsia/Azoarcus, Magnetospirillum/Thauera Syntrophus and Geobacter clades), with the placement generally depending on redox conditions. Gene numbers were also correlated with toluene degradation and the final gene number for both genes differed considerably between the range of redox conditions. The work is the first in depth investigation of bamA diversity over a range of redox conditions and inoculum sources.  相似文献   

11.
Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C5 and C16 at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of hydrocarbon-degrading bacteria to the contamination at the molecular level.  相似文献   

12.
A bacterium designated strain B113, able to degrade benzene, toluene, and ethylbenzene compounds (BTE), was isolated from gasoline-contaminated sediment at a gas station in Geoje, Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Acinetobacter. The biodegradation rates of benzene, toluene, and ethylbenzene were relatively low in MSB broth, but the addition of yeast extract had a substantial impact on the biodegradation of BTE compounds, which suggested that yeast extract might provide a factor that was necessary for its growth or BTE biodegradation activity. However, interestingly, the biodegradation of BTE compounds occurred very quickly in slurry systems amended with sterile soil. Moreover, if soil was combusted first to remove organic matters, the enhancement effect on BTE biodegradation was lost, indicating that some insoluble organic compounds were probably beneficial for BTE degradation in contaminated sediment. This study suggests that strain B113 may play an important role for biodegradation of BTE in the contaminated site.  相似文献   

13.
A TaqMan quantitative real-time polymerase chain reaction (qPCR) assay was developed for the detection and enumeration of three Pseudomonas species belonging to the mendocina sublineage (P. oleovorans, P. pseudoalcaligenes, and P. oleovorans subsp. lubricantis) found in contaminated metalworking fluids (MWFs). These microbes are the primary colonizers and serve as indicator organisms of biodegradation of used MWFs. Molecular techniques such as qPCR are preferred for the detection of these microbes since they grow poorly on typical growth media such as R2A agar and Pseudomonas isolation agar (PIA). Traditional culturing techniques not only underestimate the actual distribution of these bacteria but are also time-consuming. The primer–probe pair developed from gyrase B (gyrB) sequences of the targeted bacteria was highly sensitive and specific for the three species. qPCR was performed with both whole cell and genomic DNA to confirm the specificity and sensitivity of the assay. The sensitivity of the assay was 101 colony forming units (CFU)/ml for whole cell and 13.7 fg with genomic DNA. The primer–probe pair was successful in determining concentrations from used MWF samples, indicating levels between 2.9 × 103 and 3.9 × 106 CFU/ml. In contrast, the total count of Pseudomonas sp. recovered on PIA was in the range of <1.0 × 101 to 1.4 × 105 CFU/ml for the same samples. Based on these results from the qPCR assay, the designed TaqMan primer–probe pair can be efficiently used for rapid (within 2 h) determination of the distribution of these species of Pseudomonas in contaminated MWFs.  相似文献   

14.
The response of Pseudomonas putida F1 to process fluctuations and operational failures during toluene biodegradation was evaluated in a chemostat suspended growth bioreactor. The ability of P. putida F1 to rapidly increase its specific toluene degradation capacity resulted in no significant variation in process removal efficiency when toluene load was increased from 188 to 341 g m−3 h−1. Likewise, bacterial activity rapidly reached steady state performance (in less than 1.5 h after the restoration of steady state operational conditions) following an 8 h process shutdown, or after episodes of toluene or mineral nutrients deprivation. Process performance was however highly sensitive to pH, as pH levels below 4.5 dramatically inhibited bacterial activity, decreasing severely process robustness and inducing a cycle of periodic process collapses and recoveries. This pH mediated deterioration of bacterial activity was confirmed by further respirometric tests, which revealed a 50–60% reduction in the O2 consumption rate during the degradation of both toluene and 3-methyl catechol when pH decreased from 5.05 to 4.55. Finally, process robustness was quantified according to methods previously described in literature.  相似文献   

15.
16.
Aims: This study intended to unravel the physiological interplay in an anaerobic microbial community that degrades toluene under sulfate‐reducing conditions combining proteomic and genetic techniques. Methods and Results: An enriched toluene‐degrading community (Zz5‐7) growing in batch cultures was investigated by DNA‐ and protein‐based analyses. The affiliation and diversity of the community were analysed using 16S ribosomal RNA (rRNA) genes as a phylogenetic marker as well as bssA and dsrAB genes as functional markers. Metaproteome analysis was carried out by a global protein extraction and a subsequent protein separation by two‐dimensional gel electrophoresis (2‐DE). About 85% of the proteins in the spots were identified by nano‐liquid chromatography coupled with electrospray mass spectrometry (nano‐LC–ESI‐MS/MS) analysis. DNA sequencing of bssA and the most abundant dsrAB amplicons revealed high similarities to a member of the Desulfobulbaceae, which was also predominant according to 16S rRNA gene amplicons. Metaproteome analysis provided 202 unambiguous protein identifications derived from 236 unique protein spots. The proteins involved in anaerobic toluene activation, dissimilatory sulfate reduction, hydrogen production/consumption and autotrophic carbon fixation were mainly affiliated to members of the Desulfobulbaceae and several other Deltaproteobacteria. Conclusion: Phylogenetic and metaproteomic analyses revealed a member of the Desulfobulbaceae as the key player of anaerobic toluene degradation in a sulfate‐reducing consortium. Significance and Impact of the Study: This is the first study that combines genetic and proteomic analyses to indicate the interactions in an anaerobic toluene‐degrading microbial consortium.  相似文献   

17.
Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions.  相似文献   

18.
One of the main impacts of urban sprawl in rapidly growing countries has been contamination of coastal environments by waterborne pathogens, posing a critical risk to ecosystem and human health. Microbial source tracking (MST) has been a robust tool to identify the origin of these pathogens globally. This study compared the occurrence of a human-associated Bacteroides marker (BT-α) with faecal indicator bacteria (FIB) in an urban estuary (Golden Horn, Istanbul, Turkey). Faecal coliform (culture method), enterococci (both culture and qPCR method) concentrations and physicochemical variables were compared with the BT-α concentrations in monthly collected samples for a year (n = 108). Enterococci concentrations detected by culture and qPCR were positively correlated (r = 0·86, P < 0·01) suggesting that qPCR can be an alternative method for monitoring. BT-α marker was positive for 30% of the samples and positively correlated with enterococci (r = 0·61 and r = 0·64 for culture and qPCR methods respectively, P < 0·01). Rainfall had a moderate positive correlation with all faecal/MST indicators suggesting combined sewer overflows also severely impacted estuarine water quality. The high FIB and BT-α concentrations at upper estuary suggested that faecal pollution mainly originated from the peri-urban settlements around two creeks entering the estuary.  相似文献   

19.
The present study was done to determine the modulation effect(s) of polymorphisms of XRCC1, GSTM1, and GSTT1 on concentration of serum testosterone in females exposed to natural sour gas. Also we examine whether chronic exposure to natural gas containing sulfur compounds act as natural selection force on XRCC1 polymorphisms. The present study was performed on 68 healthy unrelated female students living in polluted areas of MIS. Also for investigating the effect of natural selection on XRCC1 polymorphism, a study was performed on two groups of healthy individuals of MIS citizens. The first and second groups including 94 (age range 30–85 years) and 187 individuals (age range 5–20 years), respectively. First and second groups were born and were not born in contaminated areas of the MIS, respectively. There was no significant difference between genotypes of XRCC1 for concentration of serum testosterone. Although GSTT1-null genotype had higher level of serum testosterone in comparison with the present genotype (t = 2.392, df = 66, P = 0.023), a borderline difference between genotypes of GSTM1 for serum testosterone was observed (t = 1.928, df = 66, P = 0.058). Analysis of variance revealed significant difference between combination genotypes of GSTM1 and GSTT1 for serum testosterone (F = 4.167; df = 3, 64; P = 0.009). The Duncan post hoc test indicated that the combination genotype of “present GSTM1/null GSTT1” had significant higher level of testosterone. There is no evidence that XRCC1 polymorphisms have advantage/disadvantage when population exposed to natural sour gas. The polymorphisms of GSTM1 and GSTT1 modulate serum testosterone concentration in young females exposed to natural sour gas.  相似文献   

20.
Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine‐scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild‐caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small‐bodied wild terrestrial salamander populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号