首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cetuximab is a novel therapeutic monoclonal antibody with two N-glycosylation sites: a conserved site in the CH2 domain and a second site within the framework 3 of the variable portion of the heavy chain. The detailed structures of these oligosaccharides were successfully characterized using orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight mass spectrometry (oMALDI Qq-TOF MS) and tandem mass spectrometry (MS/MS) in combination with exoglycosidase digestion. The N-linked oligosaccharides were released by treatment with N-glycanase F, reductively aminated with anthranilic acid, and fractionated by normal phase high-performance liquid chromatography (NP-HPLC). The fluorescent-labeled oligosaccharide pool and fractions were analyzed by oMALDI Qq-TOF MS and MS/MS in negative ion mode. Each fraction was further digested with an array of exoglycosidase mixtures, and subsequent MALDI TOF MS analysis of the resulting products yielded information about structural features of the oligosaccharide. The combined data revealed the presence of 21 distinct oligosaccharide structures in cetuximab. These oligosaccharides differ mainly in degree of sialylation with N-glycolyl neuraminic acid and extent of galactosylation (zero-, mono-, di-, and alpha(1-3)-galactosidase). The individual oligosaccharides were further assigned to the specific sites in the Fab and Fc regions of the antibody. This study represents a unique approach in that MS/MS data were used to identify and confirm the oligosaccharide structures of a protein.  相似文献   

2.
Mass spectrometry (MS) of glycoproteins is an emerging field in proteomics, poised to meet the technical demand for elucidation of the structural complexity and functions of the oligosaccharide components of molecules. Considering the divergence of the mass spectrometric methods employed for oligosaccharide analysis in recent publications, it is necessary to establish technical standards and demonstrate capabilities. In the present study of the Human Proteome Organisation (HUPO) Human Disease Glycomics/Proteome Initiative (HGPI), the same samples of transferrin and immunoglobulin-G were analyzed for N-linked oligosaccharides and their relative abundances in 20 laboratories, and the chromatographic and mass spectrometric analysis results were evaluated. In general, matrix-assisted laser desorption/ionization (MALDI) time-of-flight MS of permethylated oligosaccharide mixtures carried out in six laboratories yielded good quantitation, and the results can be correlated to those of chromatography of reductive amination derivatives. For underivatized oligosaccharide alditols, graphitized carbon-liquid chromatography (LC)/electrospray ionization (ESI) MS detecting deprotonated molecules in the negative ion mode provided acceptable quantitation. The variance of the results among these three methods was small. Detailed analyses of tryptic glycopeptides employing either nano LC/ESI MS/MS or MALDI MS demonstrated excellent capability to determine site-specific or subclass-specific glycan profiles in these samples. Taking into account the variety of MS technologies and options for distinct protocols used in this study, the results of this multi-institutional study indicate that MS-based analysis appears as the efficient method for identification and quantitation of oligosaccharides in glycomic studies and endorse the power of MS for glycopeptide characterization with high sensitivity in proteomic programs.  相似文献   

3.
Normal phase-high performance liquid chromatography (NP-HPLC) coupled to matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry is evaluated for the detailed structural characterization of various isomers of arabinoxylan (AX) oligosaccharides produced from endo-beta-(1-->4)-xylanase (endoxylanase) digestion of wheat AX. The fragmentation characteristics of these oligosaccharides upon MALDI-TOF/TOF high-energy collision induced dissociation (CID) were investigated using purified AX oligosaccharide standards labeled at the reducing end with 2-aminobenzoic acid (2-AA). A variety of cross-ring cleavages and 'elimination' ions in the fragment ion spectra provided extensive structural information, including Araf substitution patterns along the xylan backbone and comprehensive linkage assignment. The off-line coupling of this MALDI-CID technique to capillary normal phase HPLC enabled the separation and identification of isomeric oligosaccharides (DP 4-8) produced by endoxylanase digestion of AX. Furthermore, this technique was used to characterize structurally different isomeric AX oligosaccharides produced by endoxylanase enzymes with different substrate specificities.  相似文献   

4.
Eight pyridylamino (PA) derivatives of fucose-containing oligosaccharides, which occur as free oligosaccharides in human milk and also are derived from glycosphingolipids, have been analyzed by high-performance liquid chromatography (HPLC) on normal-phase and reversed-phase columns, and by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Six out of eight PA-oligosaccharides were clearly separated by both normal- and reversed-phase HPLC at a column temperature of 40 degrees C, but two PA-oligosaccharides, lacto-N-fucopentaose II [Gal beta1-3(Fuc alpha1-4)GlcNAc beta1-3Gal beta1-4GIcPA] and lacto-N-fucopentaose III [Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-3Gal beta1-4GIcPA], were not separated. The two unresolved PA-oligosaccharides were finally separated by reversed-phase HPLC at a column temperature of 11 degrees C. MALDI-TOF mass spectra of PA-oligosaccharides demonstrated pseudo-molecular ions as the predominant signals, therefore information about the molecular mass of each PA-oligosaccharide was easily obtained. Post-source decay (PSD) MALDI-TOF mass spectra of PA-oligosaccharides gave information about the carbohydrate sequences and carbohydrate species of each PA-oligosaccharide by detecting the ions responsible for the cleavage of the glycosidic bonds. The detection limits of the PA-oligosaccharides by HPLC, MALDI-TOF mass spectrometry, and PSD MALDI-TOF mass spectrometry were 20 fmol, 20 fmol, and 2 pmol, respectively. These results suggest that a system including HPLC and MALDI-TOF mass spectrometry or HPLC and PSD MALDI-TOF mass spectrometry is quite useful for the structural characterization of sub-pmol or pmol levels of fucose-containing oligosaccharides, and that these methods could be used for the analysis of various types of oligosaccharides derived from glycoproteins and glycosphingolipids.  相似文献   

5.
Anumula  KR; Dhume  ST 《Glycobiology》1998,8(7):685-694
Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2- aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.   相似文献   

6.
A new analytical approach based on capillary electrophoresis-electrospray mass spectrometry (CE/ESI-MS) has provided new insight into the characterization of mannooligosaccharide caps from lipoarabinomannans (LAMs), which are key molecules in the immunopathogenesis of tuberculosis. This analytical approach requires oligosaccharide labeling with the fluorophore 1-aminopyrene-3,6,8-trisulfonate (APTS) by reductive amination at the reducing termini. Optimization of the separation and ionization conditions, such as the choice of capillary electrophoresis (CE) electrolyte buffers, is presented and discussed. Anionic separation of the mono and oligosaccharide APTS derivatives was finally achieved with aqueous triethylammonium formate buffer. It was found that in contrast to the triethylammonium phosphate buffer, the triethylammonium formate buffer was appropriate for CE/ESI-MS coupling analysis of APTS-carbohydrate derivatives. In this case, negative ESI-mass spectra of APTS-carbohydrate adducts showed mainly (M-2H)2-pseudomolecular ions and some sequence fragment ions allowing their non-ambiguous structural characterization at the picomolar level. This analytical approach was successfully applied to more complex mixtures of carbohydrates released by mild acid hydrolysis of the lipoarabinomannans from Mycobacterium bovis BCG. The APTS-mannooligosaccharide cap adducts were separated by CE and their structural characterization achieved by CE/ESI-MS analyses. Mannooligosaccharide caps were routinely analyzed by capillary electrophoresis-laser induced fluorescence (CE-LIF) from 50 fmol of lipoarabinomannans with mannosyl capping (ManLAMs) but sensitivity was about 50 times lower using ESI-MS detection.  相似文献   

7.
A second generation of lipid-linked oligosaccharide probes, fluorescent neoglycolipids, has been designed and synthesized for ligand discovery within highly complex mixtures of oligosaccharides. The aminolipid 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE), which has been used extensively to generate neoglycolipids for biological and structural studies, has been modified to incorporate a fluorescent label, anthracene. This new lipid reagent, N-aminoacetyl-N-(9-anthracenylmethyl)-1, 2-dihexadecyl-sn-glycero-3-phosphoethanolamine (ADHP), synthesized from anthracenaldehyde and DHPE gives an intense fluorescence under UV light. Fluorescent neoglycolipids derived from a variety of neutral and acidic oligosaccharides by conjugation to ADHP, by reductive amination, can be detected and quantified by spectrophotometry and scanning densitometry, and resolved by TLC and HPLC with subpicomole detection. Antigenicities of the ADHP-neoglycolipids are well retained, and picomole levels can be detected using monoclonal carbohydrate sequence-specific antibodies. Among O-glycans from an ovarian cystadenoma mucin, isomeric oligosaccharide sequences, sialyl-Lea- and sialyl-Lex-active, could be resolved by HPLC as fluorescent neoglycolipids, and sequenced by liquid secondary-ion mass spectrometry. Thus the neoglycolipid technology now uniquely combines high sensitivity of immuno-detection with a comparable sensitivity of chemical detection. Principles are thus established for a streamlined technology whereby an oligosaccharide population is carried through ligand detection and ligand isolation steps, and sequence determination by mass spectrometry, enzymatic sequencing and other state-of-the-art technologies for carbohydrate analysis.  相似文献   

8.
Liquid chromatography/mass spectrometry (LC/MS) is applied to the analysis of complex mixtures of oligosaccharides obtained through the controlled, heparinase-catalyzed depolymerization of heparin. Reversed-phase ion-pairing chromatography, utilizing a volatile mobile phase, results in the high resolution separation of highly sulfated, heparin-derived oligosaccharides. Simultaneous detection by UV absorbance and electrospray ionization-mass spectrometry (ESI-MS) provides important structural information on the oligosaccharide components of this mixture. Highly sensitive and easily interpretable spectra were obtained through post-column addition of tributylamine in acetonitrile. High resolution mass spectrometry afforded elemental composition of many known and previously unknown heparin-derived oligosaccharides. UV in combination with MS detection led to the identification of oligosaccharides arising from the original non-reducing end (NRE) of the heparin chain. The structural identification of these oligosaccharides provided sequence from a reading frame that begins at the non-reducing terminus of the heparin chain. Interestingly, 16 NRE oligosaccharides are observed, having both an even and an odd number of saccharide residues, most of which are not predicted based on biosynthesis or known pathways of heparin catabolism. Quantification of these NRE oligosaccharides afforded a number-averaged molecular weight consistent with that expected for the pharmaceutical heparin used in this analysis. Molecular ions could be assigned for oligosaccharides as large as a tetradecasaccharide, having a mass of 4625 Da and a net charge of -32. Furthermore, MS detection was demonstrated for oligosaccharides with up to 30 saccharide units having a mass of >10000 Da and a net charge of -60.  相似文献   

9.
This study is the first on combined HPLC and MALDI-TOF MS analysis of phenolic acids. The analyses were carried out for phenolic acid mixtures and showed a unique, individual co-crystalline pattern for each phenolic acid. HPLC could distinguish phenolic acids and MALDI-TOF MS provided comparable mass (m/z) profiles for the samples. This combined study proved to be rapid in the accurate identification and structural analysis of phenolic acids with different masses.  相似文献   

10.
Algal fucoidan is a complex sulfated polysaccharide whose structural characterization requires powerful spectroscopic methodologies. While most of the structural investigations reported so far have been performed using NMR as the main spectroscopic method, we report herein data obtained by negative electrospray ionization mass spectrometry. MS analysis has been carried out on oligosaccharides obtained by partial hydrolysis of fucoidan from the brown algae Ascophyllum nodosum. Oligosaccharide mixtures were fractionated by size exclusion chromatography, which allowed the analysis of oligomers ranging from monosaccharide to pentasaccharide. Monosaccharides were detected as monosulfated as well as disulfated forms. Besides, part of the oligosaccharides exhibited a high content of sulfate, evidencing that fucoidan contains disulfated fucosyl units. Fragmentation experiments yielded characteristic fragment ions indicating that the fucose units are mainly 2-O-sulfated. This study demonstrates that highly sulfated oligosaccharides from fucoidan can be analyzed by ESIMS which gives additional information about the structure of this highly complex polysaccharide.  相似文献   

11.
Quantification of oligosaccharides is of great importance to investigate variations or changes in the glycans of glycoconjugates. Mass spectrometry (MS) has been widely applied to identification and structural analysis of complex oligosaccharides. However, quantification using MS alone is still quite challenging due to heterogeneous charge states and different ionization efficiency of various types of oligosaccharides. To overcome such shortcomings, derivatization with carboxymethyl trimethylammonium hydrazide (Girard’s reagent T [GT]) was introduced to generate a permanent cationic charge at the reducing end of neutral oligosaccharides, resulting in mainly [M]+ ion using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), so that the ambiguities caused by metal adduct peaks such as [M+K]+ and [M + Na]+ were avoided. To verify our method, the relative and absolute quantification of neutral glycans from human immunoglobulin G (IgG) and ovalbumin with internal standards of dextran ladders using MALDI-TOF MS were compared with those performed by conventional normal-phase high-performance liquid chromatography (NP-HPLC) profiling. The quantification using GT derivatization and MALDI-TOF MS agreed well with the HPLC profiling data and showed excellent reliability and reproducibility with better resolution and sensitivity. This method was further applied to quantify the enzymatically desialylated N-glycans from miniature pig kidney membrane proteins. The results showed that the low-abundance structures that could not be resolved by NP-HPLC were quantified with high sensitivity. Thus, this novel method of using modification of neutral sugars with GT is quite powerful for neutral glycan analysis, especially to quantify minute glycan samples with undetectable levels using HPLC.  相似文献   

12.
To establish a new protocol for sensitive detection and structural characterization of sialyl oligosaccharides, their sensitivities and structural information from mass spectrometry and tandem mass spectrometry with FAB-, ESI-, and MALDI were evaluated in detail. Among these ionization methods, FAB-MS and FAB-MS/MS gave reproducible and predictable spectra carrying information on sequence and branching of sialyl oligosaccharides after derivatization with 2-aminopyridine (PA). With both positive and negative ion modes, their structural elucidation promises to be straightforward, MS/MS spectra being measurable at as low as 200 pmol. Thus, this method constitutes a powerful tool for sensitive detection and structural characterization of limited quantities of sialyl oligosaccharides by FAB-MS and FAB-MS/MS.  相似文献   

13.
To establish a new protocol for sensitive detection and structural characterization of sialyl oligosaccharides, their sensitivities and structural information from mass spectrometry and tandem mass spectrometry with FAB-, ESI-, and MALDI were evaluated in detail. Among these ionization methods, FAB-MS and FAB-MS/MS gave reproducible and predictable spectra carrying information on sequence and branching of sialyl oligosaccharides after derivatization with 2-aminopyridine (PA). With both positive and negative ion modes, their structural elucidation promises to be straightforward, MS/MS specta being measurable at as low as 200 pmol. Thus, this method consitutes a powerful tool for sensitive detection and structural characterization of limited quantities of sialyl oligosaccharides by FAB-MS and FAB-MS/MS.  相似文献   

14.
We report results of a mass-spectrometric-based strategy for determining the detailed structural features of N-linked oligosaccharides from glycoproteins. The method was used to characterize a series of intact, high mannose oligosaccharides isolated from human immunoglobulin M (IgM). The IgM was purified from a patient with Waldenstrom's macroglobulinemia. The strategy included releasing the oligosaccharides by digestion of the purified glycoprotein with endoglycosidase H, separating the released oligosaccharides by high resolution gel filtration, and derivatizing the resulting reducing termini with the uv-absorbing moiety, ethyl p-aminobenzoate. This particular derivative facilitates HPLC detection and provides centers for protonation and deprotonation enhancing liquid secondary ion mass spectra. Positive and negative ion spectra contained molecular species of similar abundance. However, fragment ion peaks yielding sequence information were significantly more prominent in the negative ion mass spectra. Furthermore, it was obvious that the fragmentation patterns differed substantially for linear and branched oligomers. For linear oligosaccharides, a smooth envelope of fragment ions was observed; from low to high mass there was an ordered decrease in ion abundance from both the reducing and nonreducing termini. This pattern of fragment ions was not observed for branched oligosaccharides since in these cases fragments at certain masses could not arise by single bond cleavages. Therefore, these fragments were either significantly reduced in abundance or absent as compared with identical fragments formed from linear molecules. Importantly, 200 pmol of an oligosaccharide could be derivatized, separated, and detected by mass spectrometry, allowing identification of previously unreported minor components of the IgM oligosaccharides. Therefore, this experimental strategy is particularly useful for the purification and detailed structural characterization of low abundance oligosaccharides isolated from heterogeneous biological samples.  相似文献   

15.
Hybrid chondroitin/dermatan sulfate (CS/DS) glycosaminoglycan chains, derived from decorin secreted by human skin fibroblasts, were shown to interact with FGF-2, as did oligosaccharides derived therefrom by chondroitin B lyase digestion. In a first attempt to identify the biologically active sequence, a novel protocol for structural analysis of enzyme-resistant oligosaccharides larger than standard trisulfated hexasaccharides was developed. The method bases on capillary electrophoresis (CE) for separating oversulfated species in offline combination with nanoelectrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoESI-QTOF-MS/MS) in the negative ion mode. Under optimized CE and ESI-MS conditions, up to 12-mer oligosaccharides with different degrees of sulfation were identified. A novel tandem MS protocol (CID-VE) was applied to elucidate the structure of a previously undescribed pentasulfated CS/DS hexasaccharide, Delta-4,5-IdoAGalNAc[GlcAGalNAc]2(5S). In this molecular species, detected as a triply charged ion at m/z 511.38, three sulfates are found in the IdoAGalNAcGlcA moiety offering two structural variants: one containing sulfated IdoA together with a disulfated GalNAc moiety and in the other one both uronic acids, that is, GlcA and IdoA and the amino sugar each carry a sulfate ester group.  相似文献   

16.
Mass spectrometry (MS) has the potential to revolutionize structural glycobiology and help in the understanding of how post-translation events such as glycosylation affect protein activities. Several approaches to determine the structure of glycopeptides have been used successfully including fast atom bombardment, matrix-assisted laser desorption ionization, and electrospray ionization with a wide variety of mass analyzers. However, the identification of glycopeptides in a complex mixture still remains a challenge. The source of this challenge is primarily due to the poor ionization efficiency and rapid degradation of glycopeptides. In this report we describe the use of a chip-based infusion nanoelectrospray ionization technique in combination with a recently developed linear ion trap for identification and characterization of glycosylation in complex mixtures. Two standard synthetic glycans were analyzed using multiple-stage fragmentation analysis in both positive and negative ionization modes. In addition, the high mannose type N-glycosylation in ribonuclease B (RNase B) was used to map the glycosylation site and obtain the glycan structures. We were able to map the glycosylation site and obtain the glycan structures in RNase B in a single analysis. The results reported here demonstrate that the fully automated chip-based nanoelectrospray linear ion trap platform is a valuable system for oligosaccharide analyses due to the unique MS/MS and MS(n) capability of the linear ion trap and the extended analysis time provided by the ionization technique.  相似文献   

17.
A complex mixture of diverse oligosaccharides related to the carbohydrates in glycoconjugates involved in various biological events is found in animal milk/colostrum and has been challenging targets for separation and structural studies. In the current study, we isolated oligosaccharides having high molecular masses (MW ∼ 3800) from the milk samples of bearded and hooded seals and analyzed their structures by off-line normal-phase-high-performance liquid chromatography-matrix-assisted laser desorption/ionization-time-of-flight (NP-HPLC-MALDI-TOF) mass spectrometry (MS) by combination with sequential exoglycosidase digestion. Initially, a mixture of oligosaccharides from the seal milk was reductively aminated with 2-aminobenzoic acid and analyzed by a combination of HPLC and MALDI-TOF MS. From MS data, these oligosaccharides contained different numbers of lactosamine units attached to the nonreducing lactose (Galβ1-4Glc) and fucose residue. The isolated oligosaccharides were sequentially digested with exoglycosidases and characterized by MALDI-TOF MS. The data revealed that oligosaccharides from both seal species were composed from lacto-N-neohexaose (LNnH, Galβ1-4GlcNAcβ1-6[Galβ1-4GlcNAcβ1-3]Galβ1-4Glc) as the common core structure, and most of them contained Fucα1-2 residues at the nonreducing ends. Furthermore, the oligosaccharides from both samples contained multibranched oligosaccharides having two Galβ1-4GlcNAc (N-acetyllactosamine, LacNAc) residues on the Galβ1-4GlcNAcβ1-3 branch or both branches of LNnH. Elongation of the chains was observed at 3-OH positions of Gal residues, but most of the internal Gal residues were also substituted with an N-acetyllactosamine at the 6-OH position.  相似文献   

18.
CDTA-extractable soybean pectic substances were subjected to enzymatic digestion with arabinogalactan degrading enzymes yielding a resistant polymeric pectic backbone and arabino-, galacto-, and arabinogalacto-oligomers. The complex digest was fractionated using size-exclusion chromatography. Monosaccharide composition analysis, HPAEC fractionation and MALDI-TOF MS analysis of the resulting fractions showed that each contained a mixture of oligosaccharides of essentially the same degree of polymerisation, composed of only arabinose and galactose. MALDI-TOF MS analysis was used for molecular mass screening of oligosaccharides in underivatised HPAEC fractions. The monosaccharide sequence and the branching pattern of oligosaccharides (degree of polymerisation from 4 to 8) were determined using linkage analysis and ES-CID tandem MS analysis of the per-O-methylated oligosaccharides in each of the HPAEC fractions. These analyses indicated the presence of common linear (1 --> 4)-linked galacto-oligosaccharides, and both linear and branched arabino-oligosaccharides. In addition, the results unambiguously showed the presence of oligosaccharides containing (1 --> 4)-linked galactose residues bearing an arabinopyranose residue as the non-reducing terminal residue, and a mixture of linear oligosaccharides constructed of (1 --> 4)-linked galactose residues interspersed with an internal (1 --> 5)-linked arabinofuranose residue. The consequences of these two new structural features of pectic arabinogalactan side chains are discussed.  相似文献   

19.
Broberg A 《Carbohydrate research》2007,342(11):1462-1469
Milk oligosaccharides derivatized by reductive amination with benzylamine followed by N,N-dimethylation (DMBA-oligosaccharides), were analyzed by high-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry (HPLC/ESI-ITMS). Separation of DMBA-oligosaccharides was achieved on a graphitized carbon column eluted with aqueous acetonitrile and the DMBA-oligosaccharides were detected by positive-ion mode ESI-ITMS allowing sample amounts down to approximately 30fmol of single DMBA-oligosaccharides injected on the HPLC column. MS/MS operation of the mass spectrometer resulted in the detection of diagnostic fragments, mainly belonging to the Y-series, allowing differentiation between isomeric milk oligosaccharides. HPLC/ESI-ITMS/MS/MS experiments indicated the migration of fucose residues of the DMBA milk oligosaccharides to the modified reducing end glucose residue during analysis, a migration previously only observed for proton adduct ions.  相似文献   

20.
We have developed a lectin affinity high-performance liquid chromatography technique for analysis of oligosaccharides using columns of silica-bound lectins. Purified leukoagglutinating phytohemagglutinin (L-PHA), concanavalin A (Con A), Datura stramonium agglutinin (DSA), and Vicia villosa agglutinin (VVA) were covalently coupled to periodate-oxidized diol-silica by reductive amination. Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with the silica-bound lectins. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. The oligosaccharide specificities displayed by silica-bound L-PHA, Con A, and DSA were virtually identical to those established utilizing lectin-agarose conjugates. Analysis of oligosaccharides by lectin affinity HPLC allowed further definition of the specificity of VVA for N-glycanase-released, reduced oligosaccharides. Lectin affinity HPLC is rapid and convenient, providing an important structure-specific dimension to oligosaccharide analysis. This technique is particularly useful when utilized in conjunction with anion-exchange and ion-suppression amine adsorption HPLC methods, which fractionate on the basis of charge and size, respectively. In addition to their utility for oligosaccharide characterization, these affinity columns demonstrate the high degree of oligosaccharide specificity displayed by plant and animal lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号