首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The upstream coagulation enzymes are homologous trypsin-like serine proteases that typically function in enzyme-cofactor complexes, exemplified by coagulation factor VIIa (VIIa), which is allosterically activated upon binding to its cell surface receptor tissue factor (TF). TF cooperates with VIIa to create a bimolecular recognition surface that serves as an exosite for factor X binding. This study analyzes to what extent scissile bond docking to the catalytic cleft contributes to macromolecular substrate affinity. Mutation of the P1 Arg residue in factor X to Gln prevented activation by the TF.VIIa complex but did not reduce macromolecular substrate affinity for TF.VIIa. Similarly, mutations of the S and S' subsites in the catalytic cleft of the enzyme VIIa failed to reduce affinity for factor X, although the affinity for small chromogenic substrates and the efficiency of factor X scissile bond cleavage were reduced. Thus, docking of the activation peptide bond to the catalytic cleft of this enzyme-cofactor complex does not significantly contribute to affinity for macromolecular substrate. Rather, it appears that the creation of an extended macromolecular substrate recognition surface involving enzyme and cofactor is utilized to generate substrate specificity between the highly homologous, regulatory proteases of the coagulation cascade.  相似文献   

2.
The interaction of factor VIIa with tissue factor (TF) results in an increase in the catalytic efficiency for the hydrolysis of several synthetic peptidyl p-nitroanilide substrates by factor VIIa. The binding of human recombinant factor VIIa to recombinant human TF incorporated into vesicles containing phosphatidylcholine (TF/PC) or phosphatidylcholine/phosphatidylserine (TF/PCPS) was studied using the increased rate of H-D-phenylalanyl L-pipecoyl L-arginine p-nitroanilide (S2238) hydrolysis as a signal for the interaction. The saturable dependence of rate on increasing concentrations of factor VIIa or TF/PCPS yielded no obvious evidence for cooperativity and could be analyzed according to the interaction of factor VIIa with independent noninteracting sites (Kd = 259 +/- 60 pM, n = 1.05 +/- 0.12 mol of factor VIIa/mol of TF at saturation). Identical titration curves and equilibrium parameters were derived from titrations using TF/PC or TF in the absence of phospholipids, indicating that possible protein-membrane interactions do not further stabilize the extrinsic Xase complex. The dissociation constant for the interaction of factor VIIa with TF/PCPS inferred from measurements of factor X activation (Kd = 197 +/- 38 pM) was comparable with the values obtained from measurements of S2238 hydrolysis. In contrast to the membrane-independent nature of the enzyme-cofactor interaction, the rate of factor X activation was reduced by approximately 50-fold when the enzyme complex was assembled using solution-phase TF. Collectively, the result indicate that the membrane dependence of extrinsic Xase function primarily results from an influence of the membrane surface on factor X utilization.  相似文献   

3.
Macromolecular substrate docking with coagulation enzyme-cofactor complexes involves multiple contacts distant from the enzyme's catalytic cleft. Here we characterize the binding of the Gla-domain of macromolecular substrate coagulation factor X to the complex of tissue factor (TF) and VIIa. Site-directed mutagenesis of charged residue side chains in the VIIa Gla-domain identified Arg-36 as being important for macromolecular substrate docking. Ala substitution for Arg-36 resulted in an increased KM and a decreased rate of X activation. X with a truncated Gla-domain was activated by mutant and wild-type VIIa at indistinguishable rates, demonstrating that Arg-36 interactions require a properly folded Gla-domain of the macromolecular substrate. VIIa Arg-36 was also required for effective docking of the X Gla-domain in the absence of phospholipid, demonstrating that the Gla-domain of VIIa participates in protein-protein interactions with X. In the absence of TF, the mutant VIIa had essentially normal function, indicating that the cofactor positions VIIa's Gla-domain for optimal macromolecular substrate docking. Computational docking suggests multiple charge complementary contacts of the X Gla-domain with TF.VIIa. A prominent interaction is made by the functionally important X residue Gla-14 with the center of the extended docking site created by residues in the carboxyl module of TF and the contiguous VIIa Gla-domain. These data demonstrate the functional importance of interactions of the Gla-domains of enzyme and substrate, and begin to elucidate the molecular details of the ternary TF.VIIa.X complex.  相似文献   

4.
High affinity binding of factor VIIa (VIIa) to its cellular receptor tissue factor (TF), as well as association of factor X with phospholipid are required for optimal assembly of the extrinsic activation complex. In addition to the interactions of substrate with phospholipid and enzyme, we here provide evidence that cofactor residues Lys-165 and Lys-166 specifically contribute to the recognition of macromolecular substrate. Ala for Lys replacement in TFA165A166 was compatible with high affinity binding of VIIa when analyzed on cell surfaces as well as in the absence of phospholipid. Dissociation of TFA165A166.VIIa did not occur with a faster rate compared to TF.VIIa, further supporting unaltered VIIa binding function of TFA165A166. Cleavage of chromogenic peptidyl substrate by TFA165A166.VIIa complexes was not diminished, demonstrating that TFA165A166 supported enhancement of catalytic function of the VIIa protease domain. In contrast, factor X activation was reduced in the presence and absence of phospholipid. Further, TFA165A166 effectively competed with wild-type TF in the cleavage of factor X at limited VIIa concentrations. Selective reduction in macromolecular substrate hydrolysis combined with normal VIIa binding by TFA165A166 indicates that the cofactor TF does contribute, either directly or indirectly via specific interactions with VIIa, to factor X recognition.  相似文献   

5.
Protein-phospholipid as well as protein-protein interactions may be critical for tight binding of the serine protease factor VIIa (VIIa) to its receptor cofactor tissue factor (TF). To elucidate the role of protein-protein interactions, we analyzed the interaction of VII/VIIa with TF in the absence of phospholipid. Binding of VII occurred with similar affinity to solubilized and phospholipid-reconstituted TF. Lack of the gamma-carboxyglutamic acid (Gla)-domain (des-(1-38)-VIIa) resulted in a 10- to 30-fold increase of the Kd for the interaction, as did blocking the Gla-domain by Fab fragments of a specific monoclonal antibody. These results suggest that the VII Gla-domain can participate in protein-protein interaction with the TF molecule per se rather than only in interactions with the charged phospholipid surface. Gla-domain-independent, low affinity binding of VII to TF required micromolar Ca2+, indicating involvement of high affinity calcium ion binding sites suggested to be localized in VII rather than TF. Interference with Gla-domain-dependent interactions with TF did not alter the TF. VIIa-dependent cleavage of a small peptidyl substrate, whereas the proteolytic activation of the protein substrate factor X was markedly decreased, suggesting that the VIIa Gla-domain not only participates in the formation of a more stable TF. VIIa complex but contributes to extended substrate recognition.  相似文献   

6.
Membrane anchoring of tissue factor (TF), the cell receptor for coagulation factor VIIa (VIIa), exemplifies an effective mechanism to localize proteolysis at the cell surface. A recombinant TF mutant (TF1-219), deleted of membrane spanning and intracellular domains, was used to evaluate the role of phospholipid interactions for assembly of substrate with the catalytic TF.VIIa complex. TF1-219 was secreted by cells rather than expressed as a cell membrane protein. Unlike free VIIa, TF1-219 as well as the TF1-219.VIIa complex demonstrated no stable association with phospholipid. In the absence of lipid, kinetic evaluation of substrate factor X cleavage by free VIIa, TF.VIIa, and TF1-219.VIIa suggests that the catalytic function of VIIa rather than substrate recognition is enhanced by complex formation. Furthermore, compared with free factor X, factor X on phospholipid was preferentially cleaved as a substrate by TF1-219.VIIa. TF-dependent initiation of the coagulation protease cascades thus involves an enhancement of the activation of factor X on the cell surface by a crucial role of the TF transmembrane domain to membrane anchor the reaction, by the TF extracellular domain to provide protein-protein interactions with VIIa to enhance the activity of the catalytic domain of VIIa, and the preferential presentation of factor X as a substrate when associated with phospholipid surfaces.  相似文献   

7.
Safa O  Morrissey JH  Esmon CT  Esmon NL 《Biochemistry》1999,38(6):1829-1837
Factor VIIa, in complex with tissue factor (TF), is the serine protease responsible for initiating the clotting cascade. This enzyme complex (TF/VIIa) has extremely restricted substrate specificity, recognizing only three previously known macromolecular substrates (serine protease zymogens, factors VII, IX, and X). In this study, we found that TF/VIIa was able to cleave multiple peptide bonds in the coagulation cofactor, factor V. SDS-PAGE analysis and sequencing indicated the factor V was cleaved at Arg679, Arg709, Arg1018, and Arg1192, resulting in a molecule with a truncated heavy chain and an extended light chain. This product (FVTF/VIIa) had essentially unchanged activity in clotting assays when compared to the starting material. TF reconstituted into phosphatidylcholine vesicles was ineffective as a cofactor for the factor VIIa cleavage of factor V. However, incorporation of phosphatidylethanolamine in the vesicles had little effect over the presence of 20% phosphatidylserine. FVTF/VIIa was as sensitive to inactivation by activated protein C (APC) as thrombin activated factor V as measured in clotting assays or by the appearance of the expected heavy chain cleavage products. The FVTF/VIIa could be further cleaved by thrombin to release the normal light chain, albeit at a significantly slower rate than native factor V, to yield a fully functional product. These studies thus reveal an additional substrate for the TF/VIIa complex. They also indicate a new potential regulatory pathway of the coagulation cascade, i.e., the production of a form of factor V that can be destroyed by APC without the requirement for full activation of the cofactor precursor.  相似文献   

8.
The activation of factor X by VIIa/TF and the Xa-dependent inhibition of the enzyme complex by tissue factor pathway inhibitor (TFPI) are considered primary steps in the initiation of coagulation. IX activation by VIIa/TF is considered to contribute catalyst necessary for further Xa production in the ensuing amplification phase. We have investigated Xa and IXabeta production by VIIa-TF in a system reconstituted with both X and IX and the principal physiologic inhibitors of this pathway TFPI and antithrombin III (AT). Kinetic studies without inhibitors established that IX and X functioned as competitive alternate substrates for VIIa/TF with similar kinetic constants. When both IX and X were present, TFPI significantly inhibited the extent of formation of either IXabeta or Xa. In contrast, AT rapidly depleted active Xa with a small effect on IXabeta formation. When both AT and TFPI were present, active IXabeta formation significantly exceeded the formation of active Xa regardless of the VIIa/TF concentration. These findings could be quantitatively accounted for by a model encompassing the kinetics of the individual activation and inhibition steps. Active Xa formation by this pathway is regulated in a principal way by its rapid inactivation by AT. In contrast, the Xa-dependent inhibitory reactions of TFPI play a primary role in limiting zymogen consumption and the formation of active IXabeta. These regulatory phenomena yield active IXabeta as a major rather than secondary product of VIIa/TF. Our findings raise the possibility that IXabeta produced by the extrinsic pathway, and its ability to function within the intrinsic Xase complex to activate X may play a significant role in producing Xa necessary for both the initiation and sustained phases of the procoagulant response following vascular damage.  相似文献   

9.
The cell surface receptor tissue factor (TF) initiates coagulation by supporting the proteolytic activation of factors X and IX as well as VII to active serine proteases. Architectural similarity of TF to the cytokine receptor family suggests a strand-loop-strand structure for TF residues 151-174. Site-directed Ala exchanges in the predicted surface loop demonstrated that residues Tyr157, Lys159, Ser163, Gly164, Lys165, and Lys166 are important for function. Addition of side chain atoms at the Ser162 position decreased function, whereas the Ala exchange was tolerated. The dysfunctional mutants bound VII with high affinity and fully supported the catalysis of small peptidyl substrates by the mutant TF.VIIa complex. Lys159-->Ala substitution was compatible with efficient activation of factor X, whereas the Try157-->Ala exchange and mutations in the carboxyl aspect of the predicted loop resulted in diminished activation of factor X. The specific plasma procoagulant activity of all functionally deficient mutants increased 7- to 200-fold upon the supplementation of VIIa suggesting that TF residues 157-167 also provide important interactions that accelerate the activation of VII to VIIa. These data are consistent with assignment of the TF 157-167 region as contributing to protein substrate recognition and cleavage by the TF.VIIa complex.  相似文献   

10.
The binding of recombinant nematode anticoagulant protein c2 (NAPc2) to either factor X or Xa is a requisite step in the pathway for the potent inhibition of VIIa tissue factor. We have used NAPc2 as a tight binding probe of human Xa to investigate protein substrate recognition by the human prothrombinase complex. NAPc2 binds with high affinity (K(d) approximately 1 nm) to both X and Xa in a way that does not require or occlude the active site of the enzyme. In contrast, NAPc2 is a tight binding, competitive inhibitor of protein substrate cleavage by human Xa incorporated into prothrombinase with saturating concentrations of membranes and Va. By fluorescence binding studies we show that NAPc2 does not interfere with the assembly of human prothrombinase. These are properties expected of an inhibitor that blocks protein substrate recognition by targeting extended macromolecular recognition sites (exosites) on the enzyme complex. A weaker interaction (K(d) = 260-500 nm) observed between NAPc2 and bovine X was restored to a high affinity one in a recombinant chimeric bovine X derivative containing 25 residues from the COOH terminus of the proteinase domain of human X. This region implicated in binding NAPc2 is spatially adjacent to a site previously identified as a potential exosite. Despite the weaker interaction with bovine Xa, NAPc2 was a tight binding competitive inhibitor of protein substrate cleavage by bovine prothrombinase as well. Extended enzymic surfaces elucidated with exosite-directed probes, such as NAPc2, may define a unique region of factor Xa that is modulated following its assembly into prothrombinase and in turn determines the binding specificity of the enzyme complex for its protein substrate.  相似文献   

11.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

12.
We find that the isolated, extracellular domain of tissue factor (TF1-218; sTF) exhibits only 4% of the activity of wild-type transmembrane TF (TF1-263) in an assay that measures the conversion of factor X to Xa by the TF:VIIa complex. Further, the activity of sTF is manifest only when vesicles consisting of phosphatidylserine and phosphatidylcholine (30/70 w/w) are present. To determine whether the decreased activity results from weakened affinity of sTF for VIIa, we studied their interaction using equilibrium ultracentrifugation, fluorescence anisotropy, and an activity titration. Ultracentrifugation of the sTF:VIIa complex established a stoichiometry of 1:1 and an upper limit of 1 nM for the equilibrium dissociation constant (Kd). This value is in agreement with titrations of dansyl-D-Phe-L-Phe-Arg chloromethyl ketone active site labeled VIIa (DF-VIIa) with sTF using dansyl fluorescence anisotropy as the observable. Pressure dissociation experiments were used to obtain quantitative values for the binding interaction. These experiments indicate that the Kd for the interaction of sTF with DF-VIIa is 0.59 nM (25 degrees C). This value may be compared to a Kd of 7.3 pM obtained by the same method for the interaction of DF-VIIa with TF1-263 reconstituted into phosphatidylcholine vesicles. The molar volume change of association was found to be 63 and 117 mL mol-1 for the interaction of DF-VIIa with sTF and TF1-263, respectively. These binding data show that the sTF:VIIa complex is quantitatively and qualitatively different from the complex formed by TF1-263 and VIIa.  相似文献   

13.
The ability to regulate proteolytic functions is critical to cell biology. We describe events that regulate the initiation of the coagulation cascade on endothelial cell surfaces. The transmembrane protease receptor tissue factor (TF) triggers coagulation by forming an enzymatic complex with the serine protease factor VIIa (VIIa) that activates substrate factor X to the protease factor Xa (Xa). Feedback inhibition of the TF-VIIa enzymatic complex is achieved by the formation of a quaternary complex of TF-VIIa, Xa, and the Kunitz-type inhibitor tissue factor pathway inhibitor (TFPI). Concomitant with the downregulation of TF-VIIa function on endothelial cells, we demonstrate by immunogold EM that TF redistributes to caveolae. Consistently, TF translocates from the Triton X-100-soluble membrane fractions to low- density, detergent-insoluble microdomains that inefficiently support TF- VIIa proteolytic function. Downregulation of TF-VIIa function is dependent on quaternary complex formation with TFPI that is detected predominantly in detergent-insoluble microdomains. Partitioning of TFPI into low-density fractions results from the association of the inhibitor with glycosyl phosphatidylinositol anchored binding sites on external membranes. Free Xa is not efficiently bound by cell-associated TFPI; hence, we propose that the transient ternary complex of TF-VIIa with Xa supports translocation and assembly with TFPI in glycosphingolipid-rich microdomains. The redistribution of TF provides evidence for an assembly-dependent translocation of the inhibited TF initiation complex into caveolae, thus implicating caveolae in the regulation of cell surface proteolytic activity.  相似文献   

14.
Studies of the mechanisms of blood coagulation zymogen activation demonstrate that exosites (sites on the activating complex distinct from the protease active site) play key roles in macromolecular substrate recognition. We investigated the importance of exosite interactions in recognition of factor IX by the protease factor XIa. Factor XIa cleavage of the tripeptide substrate S2366 was inhibited by the active site inhibitors p-aminobenzamidine (Ki 28 +/- 2 microM) and aprotinin (Ki 1.13 +/- 0.07 microM) in a classical competitive manner, indicating that substrate and inhibitor binding to the active site was mutually exclusive. In contrast, inhibition of factor XIa cleavage of S2366 by factor IX (Ki 224 +/- 32 nM) was characterized by hyperbolic mixed-type inhibition, indicating that factor IX binds to free and S2366-bound factor XIa at exosites. Consistent with this premise, inhibition of factor XIa activation of factor IX by aprotinin (Ki 0.89 +/- 0.52 microM) was non-competitive, whereas inhibition by active site-inhibited factor IXa beta was competitive (Ki 0.33 +/- 0.05 microM). S2366 cleavage by isolated factor XIa catalytic domain was competitively inhibited by p-aminobenzamidine (Ki 38 +/- 14 microM) but was not inhibited by factor IX, consistent with loss of factor IX-binding exosites on the non-catalytic factor XI heavy chain. The results support a model in which factor IX binds initially to exosites on the factor XIa heavy chain, followed by interaction at the active site with subsequent bond cleavage, and support a growing body of evidence that exosite interactions are critical determinants of substrate affinity and specificity in blood coagulation reactions.  相似文献   

15.
Petrovan RJ  Ruf W 《Biochemistry》2002,41(30):9302-9309
Factor VIIa (VIIa) remains in a zymogen-like state following proteolytic activation and depends on interactions with the cofactor tissue factor (TF) for function. Val(21), Glu(154), and Met(156) are residues that are spatially close in available zymogen and enzyme structures, despite major conformational differences in the corresponding loop segments. This residue triad displays unusual side chain properties in comparison to the properties of other coagulation serine proteases. By mutagenesis, we demonstrate that these residues cooperate to stabilize the enzyme conformation and to enhance the affinity for TF. In zymogen VII, however, substitution of the triad did not change the cofactor affinity, further emphasizing the crucial role of the activation pocket in specifically stabilizing the active enzyme conformation. In comparison to VIIa(Q156), the triple mutant VIIa(N21I154Q156) had a stabilized amino-terminal Ile(16)-Asp(194) salt bridge and enhanced catalytic function. However, proteolytic and amidolytic activities of free VIIa variants were not concordantly increased. Rather, a negatively charged Asp at position 21 was the critical factor that determined whether an amidolytically more active VIIa variant also more efficiently activated the macromolecular substrate. These data thus demonstrate an unexpected complexity by which the zymogenicity-determining triad in the activation pocket of VIIa controls the active enzyme conformation and contributes to exosite interactions with the macromolecular substrate.  相似文献   

16.
Huang H  Norledge BV  Liu C  Olson AJ  Edgington TS 《Biochemistry》2003,42(36):10619-10626
Tissue factor (TF), the receptor and cofactor for factor VIIa (VIIa) for cellular initiation of the coagulation protease cascade, drives thrombogenesis, inflammation, tumor cell metastasis, and the lethality of severe sepsis. To identify TF surface loci that can selectively inhibit substrate zymogen association and activation, TF(1-218), the extracellular domain, was used as the target for the phage display search. This resulted in selection of 59 clones from a phage gpVIII surface protein-expressed library of constrained combinatorial peptides. Of these, one encoding the peptide Glu-Cys-Leu-Arg-Ser-Val-Val-Thr-Cys on gpVIII most avidly bound TF(1-218), as did the synthetic peptide. Inhibition of binding was selective with an IC(50) of 30 nM for proteolytic activation of factor X by the TF(1-218)-VIIa complex. In contrast, there was no inhibition of factor IX activation. The selective inhibition of only factor X association with TF(1-218) will spare the intrinsic hemostatic pathway while attenuating the extrinsic thrombogenic pathway. This and related peptidyl structures provide the potential for the more precise identification of TF surface loci that mediate selective functional properties of the protein as well as a structural basis for the design of novel molecules for selectively attenuating initiation of the extrinsic limb of the coagulation protease cascade and other functions of TF.  相似文献   

17.
Coagulation factor X is activated by the extrinsic Xase complex composed of factor VIIa associated with the integral membrane protein tissue factor. The kinetics of human factor X activation was studied following reconstitution of this reaction system using purified human proteins and synthetic phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine (PCPS) or phosphatidylcholine alone (PC). Factor X activation was evaluated by discontinuous measurements of the amidolytic activity of the product, factor Xa, or continuously monitored using the fluorescent serine protease inhibitor 4-aminobenzamidine. The results of both techniques were verified by direct physical measurements of zymogen activation using SDS-polyacrylamide gel electrophoresis. The rate of factor X activation with PC vesicles was less than 5% of that observed with PCPS vesicles. Since factor X does not bind to vesicles containing only PC, these data suggested an important role for the substrate-membrane interaction in the catalytic cycle. The importance of the substrate-membrane interaction in the activation process was investigated by using membrane-binding proteins to compete with the substrate for combining sites on PCPS vesicles. Prothrombin fragment 1 was an inhibitor of factor X activation. The dependence of inhibition by fragment 1 on PCPS and factor X was consistent with a significant reduction in initial velocity due to the displacement of factor X from the membrane surface. The inhibition data also suggested that the membrane-bound pool of factor X was the preferred substrate for the human extrinsic Xase complex. The influence of PCPS concentrations on the rate of factor X activation was systematically investigated. Increasing concentrations of PCPS resulted in a modest change in the Km,app and a dramatic change in the Vmax,app for the reaction. The initial velocity data could be globally analyzed according to the preferential utilization of membrane-bound factor X with the intrinsic kinetic constants: Km approximately equal to 1 microM and kcat = 37 s-1 at saturating PCPS. In addition, the equilibrium parameters for the factor X-membrane interaction inferred from these studies were in excellent agreement with the directly determined values. Collectively, the data suggest that the substrate-membrane interaction must precede catalysis for the efficient activation of human factor X by the extrinsic Xase complex.  相似文献   

18.
The protease domain of coagulation factor VIIa (FVIIa) is homologous to trypsin with a similar active site architecture. The catalytic function of FVIIa is regulated by allosteric modulations induced by binding of divalent metal ions and the cofactor tissue factor (TF). To further elucidate the mechanisms behind these transformations, the effects of Zn2+ binding to FVIIa in the free form and in complex with TF were investigated. Equilibrium dialysis suggested that two Zn2+ bind with high affinity to FVIIa outside the N-terminal gamma-carboxyglutamic acid (Gla) domain. Binding of Zn2+ to FVIIa, which was influenced by the presence of Ca2+, resulted in decreased amidolytic activity and slightly reduced affinity for TF. After binding to TF, FVIIa was less susceptible to zinc inhibition. Alanine substitutions for either of two histidine residues unique for FVIIa, His216, and His257, produced FVIIa variants with decreased sensitivity to Zn2+ inhibition. A search for putative Zn2+ binding sites in the crystal structure of the FVIIa protease domain was performed by Grid calculations. We identified a pair of Zn2+ binding sites in the Glu210-Glu220 Ca2+ binding loop adjacent to the so-called activation domain canonical to serine proteases. Based on our results, we propose a model that describes the conformational changes underlying the Zn2+-mediated allosteric down-regulation of FVIIa's activity.  相似文献   

19.
Tissue factor, the physiologic trigger of blood clotting, is the membrane-anchored protein cofactor for the plasma serine protease, factor VIIa. Tissue factor is hypothesized to position and align the active site of factor VIIa relative to the membrane surface for optimum proteolytic attack on the scissile bonds of membrane-bound protein substrates such as factor X. We tested this hypothesis by raising the factor VIIa binding site above the membrane surface by creating chimeras containing the tissue factor ectodomain linked to varying portions of the membrane-anchored protein, P-selectin. The tissue factor/P-selectin chimeras bound factor VIIa with high affinity and supported full allosteric activation of factor VIIa toward tripeptidyl-amide substrates. That the active site of factor VIIa was raised above the membrane surface when bound to tissue factor/P-selectin chimeras was confirmed using resonance energy transfer techniques in which appropriate fluorescent dyes were placed in the active site of factor VIIa and at the membrane surface. The chimeras were deficient in supporting factor X activation by factor VIIa due to decreased k(cat). The chimeras were also markedly deficient in clotting plasma, although incubating factor VII or VIIa with the chimeras prior to the addition of plasma restored much of their procoagulant activity. Interestingly, all chimeras fully supported tissue factor-dependent factor VII autoactivation. These studies indicate that proper positioning of the factor VII/VIIa binding site on tissue factor above the membrane surface is important for efficient rates of activation of factor X by this membrane-bound enzyme/cofactor complex.  相似文献   

20.
The enzymatic activity of coagulation factor VIIa is controlled by its cellular cofactor tissue factor (TF). TF binds factor VIIa with high affinity and, in addition, participates in substrate interaction through its C-terminal fibronectin type III domain. We analyzed surface-exposed residues in the C-terminal TF domain to more fully determine the area on TF important for substrate activation. Soluble TF (sTF) mutants were expressed in E. coli, and their ability to support factor VIIa-dependent substrate activation was measured in the presence of phospholipid vesicles or SW-13 cell membranes. The results showed that factor IX and factor X interacted with the same TF region located proximal to the putative phospholipid surface. According to the degree of activity loss of the sTF mutants, this TF region can be divided into a main region (residues Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, Tyr185) forming a solvent-exposed patch of 488 A(2) and an extended region which comprises an additional 7-8 residues, including the distally positioned Asn199, Arg200, and Asp204. Some of the identified TF residues, such as Trp158 and those within the loop Lys159-Lys165, are near the factor VIIa gamma-carboxyglutamic acid (Gla) domain, suggesting that the factor VIIa Gla-domain may also participate in substrate interaction. Moreover, the surface identified as important for substrate interaction carries a net positive charge, suggesting that charge interactions may significantly contribute to TF-substrate binding. The calculated surface-exposed area of this substrate interaction region is about 1100 A(2), which is approximately half the size of the TF area that is in contact with factor VIIa. Therefore, a substantial portion of the TF surface (3000 A(2)) is engaged in protein-protein interactions during substrate catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号