首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endothelin receptor B gene (Ednrb) encodes a G-protein-coupled receptor that is expressed in a variety of cell types and is specifically required for the development of neural crest-derived melanocytes and enteric ganglia. In humans, mutations in this gene are associated with Waardenburg-Shah syndrome, a disorder characterized by pigmentation defects, deafness and megacolon. To address the question of whether melanocyte development depends entirely on a cell-autonomous action of Ednrb, we performed a series of tissue recombination experiments in vitro, using neural crest cell cultures from mouse embryos carrying a novel Ednrb-null allele characterized by the insertion of a lacZ marker gene. The results show that Ednrb is not required for the generation of early neural crest-derived melanoblasts but is required for the expression of the differentiation marker tyrosinase. Tyrosinase expression can be rescued, however, by the addition of Ednrb wild-type neural tubes. These Ednrb wild-type neural tubes need not be capable of generating melanocytes themselves, but must be capable of providing KIT ligand, the cognate ligand for the tyrosine kinase receptor KIT. In fact, soluble KIT ligand is sufficient to induce tyrosinase expression in Ednrb-deficient cultures. Nevertheless, these tyrosinase-expressing, Ednrb-deficient cells do not develop to terminally differentiated, pigmented melanocytes. Pigmentation can be induced, however, by treatment with tetradecanoyl phorbol acetate, which mimics EDNRB signaling, but not by treatment with endothelin 1, which stimulates the paralogous receptor EDNRA. The results suggest that Ednrb plays a significant role during melanocyte differentiation and effects melanocyte development by both cell non-autonomous and cell-autonomous signaling mechanisms.  相似文献   

2.
3.
The requirement for SOX10 and endothelin-3/EDNRB signalling pathway during enteric nervous system (ENS) and melanocyte development, as well as their alterations in Waardenburg-Hirschsprung disease (hypopigmentation, deafness and absence of enteric ganglia) are well established. Here, we analysed the genetic interactions between these genes during ENS and melanocyte development. Through phenotype analysis of Sox10;Ednrb and Sox10;Edn3 double mutants, we show that a coordinate and balanced interaction between these molecules is required for normal ENS and melanocyte development. Indeed, double mutants present with a severe increase in white spotting, absence of melanocytes within the inner ear, and in the stria vascularis in particular, and more severe ENS defects. Moreover, we show that partial loss of Ednrb in Sox10 heterozygous mice impairs colonisation of the gut by enteric crest cells at all stages observed. However, compared to single mutants, we detected no apoptosis, cell proliferation or overall neuronal or glial differentiation defects in neural crest cells within the stomach of double mutants, but apoptosis was increased in vagal neural crest cells outside of the gut. These data will contribute to the understanding of the molecular basis of ENS, pigmentation and hearing defects observed in mouse mutants and patients carrying SOX10, EDN3 and EDNRB mutations.  相似文献   

4.
Formation of the enteric nervous system (ENS) from migratory neural crest-derived cells that colonize the primordial gut involves a complex interplay among different signaling molecules. The bone morphogenetic proteins (BMPs), specifically BMP2 and BMP4, play a particularly important role in virtually every stage of gut and ENS development. BMP signaling helps to pattern both the anterior-posterior axis and the radial axis of the gut prior to colonization by migratory crest progenitor cells. BMP signaling then helps regulate the migration of enteric neural crest-derived precursors as they colonize the fetal gut and form ganglia. BMP2 and -4 promote differentiation of enteric neurons in early fetal ENS development and glia at later stages. A major role for BMP signaling in the ENS is regulation of responses to other growth factors. Thus BMP signaling first regulates neurogenesis by modulating responses to GDNF and later gliogenesis through its effects on GGF-2 responses. Furthermore, BMPs promote growth factor dependency for survival of ENS neurons (on NT-3) and glia (on GGF-2) by inducing TrkC (neurons) and ErbB3 (glia). BMP signaling limits total neuron numbers, favoring the differentiation of later born neuronal phenotypes at the expense of earlier born ones thus influencing the neuronal composition of the ENS and the glia/neuron ratio. BMP2 and -4 also promote gangliogenesis via modification of neural cell adhesion molecules and promote differentiation of the circular and then longitudinal smooth muscles. Disruption of BMP signaling leads to defects in the gut and in ENS function commensurate with these complex developmental roles.  相似文献   

5.
The study of vertebrate pigmentary anomalies has greatly improved our understanding of melanocyte biology. One such disorder, Waardenburg syndrome (WS), is a mendelian trait characterized by hypopigmentation and sensorineural deafness. It is commonly subdivided into four types (WS1-4), defined by the presence or absence of additional symptoms. WS type 4 (WS4), or Shah-Waardenburg syndrome, is also known as Hirschsprung disease Type II (HSCR II) and is characterized by an absence of epidermal melanocytes and enteric ganglia. Mutations in the genes encoding the endothelin type-B receptor (EDNRB) and its physiological ligand endothelin 3 (EDN3) are now known to account for the majority of HSCR II patients. Null mutations in the mouse genes Ednrb and Edn3 have identified a key role for this pathway in the normal development of melanocytes and other neural crest-derived lineages. The pleiotropic effects of genes in this pathway, on melanocyte and enteric neuron development, have been clarified by the embryologic identification of their common neural crest (NC) ancestry. EDNRB and EDN3 are transiently expressed in crest-derived melanoblast and neuroblast precursors, and in the surrounding mesenchymal cells, respectively. The influence of EDNRB-mediated signaling on the emigration, migration, proliferation, and differentiation of melanocyte and enteric neuron precursors, in vivo and in vitro has recently been the subject of great scrutiny. A major emergent theme is that EDN3-induced signaling prevents the premature differentiation of melanocyte and enteric nervous system precursors and is essential between 10 and 12.5 days post-coitum. We review the present understanding of pigment cell development in the context of EDNRB/EDN3--a receptor-mediated pathway with pleiotropic effects.  相似文献   

6.
7.
The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.  相似文献   

8.
Endothelin receptor B (Ednrb) plays a critical role in the development of melanocytes and neurons and glia of the enteric nervous system. These distinct neural crest-derived cell types express Ednrb and share the property of intercalating into tissues, such as the intestine whose muscle precursor cells also express Ednrb. Such widespread Ednrb expression has been a significant obstacle in establishing precise roles for Ednrb in development. We describe here the production of an Ednrb allele floxed at exon 3 and its use in excising the receptor from mouse neural crest cells by use of Cre-recombinase driven by the Wnt1 promoter. Mice born with neural crest-specific excision of Ednrb possess aganglionic colon, lack trunk pigmentation, and die within 5 weeks due to megacolon. Ednrb receptor expression in these animals is absent only in the neural crest but present in surrounding smooth muscle cells. The absence of Ednrb from crest cells also results in a compensatory upregulation of Ednrb expression in other cells within the gut. We conclude that Ednrb loss only in neural crest cells is sufficient to produce the Hirschsprungs disease phenotype observed with genomic Ednrb mutations.  相似文献   

9.
Wnt/β-catenin signaling controls multiple steps of neural crest development, ranging from neural crest induction, lineage decisions, to differentiation. In mice, conditional β-catenin inactivation in premigratory neural crest cells abolishes both sensory neuron and melanocyte formation. Intriguingly, the generation of melanocytes is also prevented by activation of β-catenin in the premigratory neural crest, which promotes sensory neurogenesis at the expense of other neural crest derivatives. This raises the question of how Wnt/β-catenin signaling regulates the formation of distinct lineages from the neural crest. Using various Cre lines to conditionally activate β-catenin in neural crest cells at different developmental stages, we show that neural crest cell fate decisions in vivo are subject to temporal control by Wnt/β-catenin. Unlike in premigratory neural crest, β-catenin activation in migratory neural crest cells promotes the formation of ectopic melanoblasts, while the production of most other lineages is suppressed. Ectopic melanoblasts emerge at sites of neural crest target structures and in many tissues usually devoid of neural crest-derived cells. β-catenin activation at later stages in glial progenitors or in melanoblasts does not lead to surplus melanoblasts, indicating a narrow time window of Wnt/β-catenin responsiveness during neural crest cell migration. Thus, neural crest cells appear to be multipotent in vivo both before and after emigration from the neural tube but adapt their response to extracellular signals in a temporally controlled manner.  相似文献   

10.
The majority of neurones and glia of the enteric nervous system (ENS) are derived from the vagal neural crest. Shortly after emigration from the neural tube, ENS progenitors invade the anterior foregut and, migrating in a rostrocaudal direction, colonise in an orderly fashion the rest of the foregut, the midgut and the hindgut. We provide evidence that activation of the receptor tyrosine kinase RET by glial cell line-derived neurotrophic factor (GDNF) is required for the directional migration of ENS progenitors towards and within the gut wall. We find that neural crest-derived cells present within foetal small intestine explants migrate towards an exogenous source of GDNF in a RET-dependent fashion. Consistent with an in vivo role of GDNF in the migration of ENS progenitors, we demonstrate that Gdnf is expressed at high levels in the gut of mouse embryos in a spatially and temporally regulated manner. Thus, during invasion of the foregut by vagal-derived neural crest cells, expression of Gdnf was restricted to the mesenchyme of the stomach, ahead of the invading NC cells. Twenty-four hours later and as the ENS progenitors were colonising the midgut, Gdnf expression was upregulated in a more posterior region - the caecum anlage. In further support of a role of endogenous GDNF in enteric neural crest cell migration, we find that in explant cultures GDNF produced by caecum is sufficient to attract NC cells residing in more anterior gut segments. In addition, two independently generated loss-of-function alleles of murine Ret, Ret.k- and miRet51, result in characteristic defects of neural crest cell migration within the developing gut. Finally, we identify phosphatidylinositol-3 kinase and the mitogen-activated protein kinase signalling pathways as playing crucial roles in the migratory response of enteric neural crest cells to GDNF.  相似文献   

11.
Loss of Endothelin-3/Endothelin receptor B (EDNRB) signaling leads to aganglionosis of the distal gut (Hirschsprung's disease), but it is unclear whether it is required primarily for neural crest progenitor maintenance or migration. Ednrb-deficient gut neural crest stem cells (NCSCs) were reduced to 40% of wild-type levels by embryonic day 12.5 (E12.5), but no further depletion of NCSCs was subsequently observed. Undifferentiated NCSCs persisted in the proximal guts of Ednrb-deficient rats throughout fetal and postnatal development but exhibited migration defects after E12.5 that prevented distal gut colonization. EDNRB signaling may be required to modulate the response of neural crest progenitors to migratory cues, such as glial cell line-derived neurotrophic factor (GDNF). This migratory defect could be bypassed by transplanting wild-type NCSCs directly into the aganglionic region of the Ednrb(sl/sl) gut, where they engrafted and formed neurons as efficiently as in the wild-type gut.  相似文献   

12.
The enteric nervous system (ENS) develops from neural crest cells that enter the gut, migrate, proliferate, and differentiate into neurons and glia. The growth factor glial-derived neurotrophic factor (GDNF) stimulates the proliferation and survival of enteric crest-derived cells. We investigated the intracellular signaling pathways activated by GDNF and their involvement in proliferation. We found that GDNF stimulates the phosphorylation of both the PI 3-kinase downstream substrate Akt and the MAP kinase substrate ERK in cultures of immunoaffinity-purified embryonic avian enteric crest-derived cells. The selective PI 3-kinase inhibitor LY-294002 blocked GDNF-stimulated Akt phosphorylation in purified crest cells, and reduced proliferation in cultures of dissociated quail gut. The ERK kinase (MEK) inhibitors PD 98059 and UO126 did not reduce GDNF-stimulated proliferation, although PD 98059 blocked GDNF-stimulated phosphorylation of ERK. We conclude that the PI 3-kinase pathway is necessary for the GDNF-stimulated proliferation of enteric neuroblasts.  相似文献   

13.
Endothelin receptors B (Ednrb) are involved in the development of the enteric and melanocytic lineages, which originate from neural crest cells (NCCs). In mice, trunk NCCs and their derivatives express only one Ednrb. In quail, trunk NCCs express two Ednrb: Ednrb and Ednrb2. Quail Ednrb is expressed in NCCs migrating along the ventral pathway, which gives rise to the peripheral nervous system, including enteric ganglia. Ednrb2 is upregulated in NCCs before these cells enter the dorsolateral pathway. The NCCs migrating along the dorsolateral pathway are melanocyte precursors. We analyzed the in vitro differentiation and in ovo migration of mouse embryonic stem (ES) cells expressing and not expressing Ednrb2. We generated a series of transfected ES cell lines expressing Ednrb2. This receptor, like Ednrb, oriented genuine ES cells towards melanocyte lineage differentiation in vitro. The in ovo migration of Ednrb2-expressing ES cells was massively oriented towards the dorsolateral pathway, unlike that of WT or Ednrb-expressing ES cells. Thus, Ednrb2 is involved in melanoblast differentiation and migration.  相似文献   

14.
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.  相似文献   

15.
The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS.  相似文献   

16.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the gut wall. The mechanisms regulating enteric neural crest-derived cell (ENCC) migration are poorly characterized despite the importance of this process in gut formation and function. Characterization of genes involved in ENCC migration is essential to understand ENS development and could provide targets for treatment of human ENS disorders. We identified the extracellular matrix glycoprotein tenascin-C (TNC) as an important regulator of ENCC development. We find TNC dynamically expressed during avian gut development. It is absent from the cecal region just prior to ENCC arrival, but becomes strongly expressed around ENCCs as they enter the ceca and hindgut. In aganglionic hindguts, TNC expression is strong throughout the outer mesenchyme, but is absent from the submucosal region, supporting the presence of both ENCC-dependent and independent expression within the gut wall. Using rat–chick coelomic grafts, neural tube cultures, and gut explants, we show that ENCCs produce TNC and that this ECM protein promotes their migration. Interestingly, only vagal neural crest-derived ENCCs express TNC, whereas sacral neural crest-derived cells do not. These results demonstrate that vagal crest-derived ENCCs actively modify their microenvironment through TNC expression and thereby help to regulate their own migration.  相似文献   

17.
The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development. The observation that an overabundance of laminin develops in the presumptive aganglionic region of the gut in Is/Is mutant mice and is associated with the inability of crest-derived cells to colonize this region of the bowel has led to the hypothesis that laminin promotes the development of crest-derived cells as enteric neurons. Premature expression of a neuronal phenotype would cause crest-derived cells to cease migrating before they complete the colonization of the gut. The acquisition by crest-derived cells of a nonintegrin, nervespecific, 110 kD laminin-binding protein when they enter the bowel may enable these cells to respond to laminin differently from their pre-enteric migrating predecessors. Crest-derived cells migrating along the vagal pathway to the mammalian gut are transiently catecholaminergic (TC). This phenotype appears to be lost rapidly as the cells enter the bowel and begin to follow their program of terminal differentiation. The appearance and disappearance of TC cells may thus be an example of the effects of the enteric microenvironment on the differentiation of crest-derived cells in situ. Crest-derived cells can be isolated from the enteric microenvironment by immunoselection, a method that takes advantage of the selective expression on the surfaces of crest-derived cells of certain antigens. One neurotrophin, NT-3, promotes the development of enteric neurons and glia in vitro. Because trkC is expressed in the developing and mature gut, it seems likely that NT-3 plays a critical role in the development of the ENS in situ. Although the factors that are responsible for the development of the unique properties of the ENS remain unknown, progress made in understanding enteric neuronal development has recently accelerated. The application of new techniques and recently developed probes suggest that the accelerated pace of discovery in this area can be expected to continue. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The mature enteric nervous system (ENS) is characterized by a degree of neuronal phenotypic diversity and independence of central nervous system control unequaled by any other region of the peripheral nervous system. Studies that have utilized the immunocytochemical demonstration of neurofilament protein and explanation of primordial gut with subsequent growth in culture have indicated that the neural crest precursors of enteric neurons are already committed to the neuronal lineage when they colonize the bowel; however, neuronal phenotypic expression occurs within the gut itself. It is likely that precursors able to give rise to each type of neuron found in the mature ENS are present among the earliest neural crest émigrés to reach the bowel. In mice a proximodistal wave of neuronal phenotypic expression occurs that does not appear to reflect the descent of neuronal precursors. This observation, the known plasticity of developing neural crest-derived neurons, and the demonstration of a persistent population of proliferating neuroblasts in the gut raise the possibility that enteric neuronal phenotypic expression is influenced by the enteric microenvironment.  相似文献   

19.
20.
Notch signaling is involved in neurogenesis, including that of the peripheral nervous system as derived from neural crest cells (NCCs). However, it remains unclear which step is regulated by this signaling. To address this question, we took advantage of the Cre-loxP system to specifically eliminate the protein O-fucosyltransferase 1 (Pofut1) gene, which is a core component of Notch signaling, in NCCs. NCC-specific Pofut1-knockout mice died within 1 day of birth, accompanied by a defect of enteric nervous system (ENS) development. These embryos showed a reduction in enteric neural crest cells (ENCCs) resulting from premature neurogenesis. We found that Sox10 expression, which is normally maintained in ENCC progenitors, was decreased in Pofut1-null ENCCs. By contrast, the number of ENCCs that expressed Mash1, a potent repressor of Sox10, was increased in the Pofut1-null mouse. Given that Mash1 is suppressed via the Notch signaling pathway, we propose a model in which ENCCs have a cell-autonomous differentiating program for neurons as reflected in the expression of Mash1, and in which Notch signaling is required for the maintenance of ENS progenitors by attenuating this cell-autonomous program via the suppression of Mash1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号