首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the -glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.  相似文献   

2.
The effectiveness of different promoters for use in transgenic tobacco was compared using a reporter gene expressing chloramphenicol acetyl transferase (CAT). Plasmids with CAT gene controlled by cauliflower mosaic virus 35S (CaMV 35S), rice actin1 (Ract1) and tobacco polyubiquitin (Tubi.u4) promoters were delivered into tobacco plants by Agrobacterium-mediated transformation. The Ract1 promoter, previously shown to be a strong promoter in rice and other monocots, failed to promote strong expression in tobacco. CAT expression was greatest from the vector carrying Tubi.u4 with a 5'UTR and leader intron without a ubiquitin monomer. In transgenic plants harboring the Tubi.u4 promoter, CAT expression was approximately twice that of the CaMV 35S promoter. Our results suggest that foreign genes under the control of a ubiquitin promoter devoid of monomer will be useful for high-level gene expression in tobacco.  相似文献   

3.
Constitutive promoters are the most common promoters used to drive the expression of various genes in monocots and dicots. Therefore, it is of intense interest to ascertain their expression patterns in various plant species, organs and during their ontogenic development. In this study, the activity of the CaMV 35S promoter in transgenic tobacco plants was assessed. In contrast to other studies, performed rather on the primary transformants (T0 generation), here, individuals of T1 and T2 generations were used. The expression profiles of the CaMV 35S promoter were tracked within various plant organs and tissues using the GFP marker. Special attention was given to floral tissues for which the original data regarding the CaMV 35S expression were obtained. As expected, distinct developmental and organ/tissue specific expression patterns in a plant body were observed. CaMV 35S activity was detected in most of the plant tissues and during different developmental stages. The GFP signal was not visible in dry seeds only, but it became clearly apparent within 24–48 h after sowing onto the medium, what, among other things, enables the discrimination of transgenic and non-transgenic seeds/seedlings. Afterwards, the most pronounced GFP fluorescence intensity was usually visible in various vascular tissues of both, T1 and T2 plants, indicating the high promoter activity. A stable manifestation of the promoter was retained in the next T2 generation without any evident changes or losses of activity, showing the expression stability of the CaMV 35S.  相似文献   

4.
5.
The intergenic regions of banana bunchy top virus (BBTV) DNA-1 to -5 were fused to the green fluorescent protein (GFP) and uidA reporter genes and assessed for promoter activity in transgenic banana (Musa spp. cv. Bluggoe). Promoter activity associated with the BBTV-derived promoters was transgene dependent with greatest activity observed using the GFP reporter. The BBTV promoters (BT1 to BT5) directed expression primarily in vascular-associated cells, although levels of activity varied between individual promoters. Promoters BT4 and BT5 directed the highest levels of GFP expression, while activity from BT1, BT2 and BT3 promoters was considerably weaker. Intron-mediated enhancement, using the maize polyubiquitin 1 (ubi1) intron, generated a significant increase in GUS expression directed by the BBTV promoters in transgenic plants. Received: 17 May 1999 / Revision received: 3 November 1999 / Accepted: 4 November 1999  相似文献   

6.
7.
The Green Fluorescent Protein (GFP) from Aequorea victoria has begun to be used as a reporter protein in plants. It is particularly useful as GFP fluorescence can be detected in a non-destructive manner, whereas detection of enzyme-based reporters often requires destruction of the plant tissue. The use of GFP as a reporter enables transgenic plant tissues to be screened in vivo at any growth stage. Quantification of GFP in transgenic plant extracts will increase the utility of GFP as a reporter protein. We report herein the quantification of a mGFP5-ER variant in tobacco leaf extracts by UV excitation and a sGFP(S65T) variant in sugarcane leaf and callus extracts by blue light excitation using the BioRad VersaFluorTM Fluorometer System or the Labsystems Fluoroskan Ascent FL equipped with a narrow band emission filter (510 ± 5 nm). The GFP concentration in transgenic plant extracts was determined from a GFP-standard series prepared in untransformed plant extract with concentrations ranging from 0.1 to 4 g/ml of purified rGFP. Levels of sgfp(S65T) expression, driven by the maize ubiquitin promoter, in sugarcane calli and leaves ranged up to 0.525 g and 2.11 g sGFP(S65T) per mg of extractable protein respectively. In tobacco leaves the expression of mgfp5-ER, driven by the cauliflower mosaic virus (CaMV) 35S promoter, ranged up to 7.05 g mGFP5-ER per mg extractable protein.  相似文献   

8.
We have produced the B subunit of the enterotoxigenic Escherichia coli (ETEC) heat-labile enterotoxin (LT-B) in transgenic maize seed. LT-B is a model antigen that induces a strong immune response upon oral administration and enhances immune responses to conjugated and co-administered antigens. Using a synthetic LT-B gene with optimized codon sequence, we examined the role of promoters and the SEKDEL endoplasmic reticulum retention motif in LT-B accumulation in callus and in kernels. Two promoters, the constitutive CaMV 35S promoter and the maize 27 kDa gamma zein promoter, which directs endosperm-specific gene expression in maize kernels, regulated LT-B expression. Ganglioside-dependent ELISA analysis showed that using the constitutive promoter, maximum LT-B level detected in callus was 0.04% LT-B in total aqueous-extractable protein (TAEP) and 0.01% in R1 kernels of transgenic plants. Using the gamma zein promoter, LT-B accumulation reached 0.07% in R1 kernels. The SEKDEL resulted in increased LT-B levels when combined with the gamma zein promoter. We monitored LT-B levels under greenhouse and field conditions over three generations. Significant variability in gene expression was observed between transgenic events, and between plants within the same event. A maximum of 0.3% LT-B in TAEP was measured in R3 seed of a transgenic line carrying CaMV 35S promoter/LT-B construct. In R3 seed of a transgenic line carrying the gamma zein promoter/LT-B construct, up to 3.7% LT-B in TAEP could be detected. We concluded that maize seed can be used as a production system for functional antigens.  相似文献   

9.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

10.
11.
The pattern and expression level of β-glucuronidase (gus) reporter gene regulated by six heterologous promoters were studied in transgenic Populus tremula × P. alba plants obtained by Agrobacterium-mediated transformation. Binary vector constructs used contained the following promoter sequences: the CaMV35S from cauliflower mosaic virus; its duplicated version fused to the enhancer sequence from alfalfa mosaic virus; CsVMV from cassava vein mosaic virus; ubiquitin 3 from Arabidopsis thaliana (UBQ3); S-adenosyl-L-methionine synthetase (Sam-s) from soybean; and the rolA from Agrobacterium rhizogenes. Histochemical staining of root, stem and leaf tissues showed phloem and xylem-specific gus expression under rolA promoter, and constitutive expression with the other putative constitutive promoters. Quantitative GUS expression of 10 – 15 independently transformed in vitro grown plants, containing each promoter, was determined by fluorimetric GUS assays. The UBQ3-gus fusion induced the highest average expression level, although an extensive variation in expression levels was observed between independent transgenic lines for all the constructs tested.  相似文献   

12.
Sucrose: sucrose 1-fructosyltransferase (1-SST) cDNA from Lactuca sativa, coding the enzyme responsible for lower degree polymers fructan biosynthesis, was cloned by RT-PCR and RACE methods. The 1-SST cDNA under the control of CaMV 35S promoter was introduced into tobacco by Agrobacterium-mediated leaf disc transformation protocol. Fructan synthesis in vitro and carbohydrate analysis showed that sense transgenic tobacco plant displayed sucrose: sucrose 1-fructosyltransferse activity. After freezing stress, significant increases in electrolyte leakage and malondialdehyde were found in the wild type and anti-sense transgenic plants, while no apparent differences were observed in sense transgenic plants. Meanwhile, water soluble carbohydrate, fructan and fructose of sense transgenic plants remarkably increased, compared with those of wild type and anti-sense plants. No significant difference was detected in superoxide dismutase activity between transgenic and wild type plants. The above results demonstrated that the expression of 1-SST gene improved the freezing resistance of transgenic tobacco plants.  相似文献   

13.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

14.
The success of plant genetic transformation relies greatly on the strength and specificity of the promoters used to drive genes of interest. In this study, we analyzed gfp gene expression mediated by a polyubiquitin promoter (Gmubi) from soybean (Glycine max) in stably transformed soybean tissues. Strong GFP expression was observed in stably transformed proliferative embryogenic tissues. In whole transgenic plants, GFP expression was observed in root tips, main and lateral roots, cotyledons and plumules in young plants as well as in leaf veins, petioles, flower petals, pollen, pods and developing seeds in mature plants. GFP expression was localized mainly in epidermal cells, leaf mesophyll, procambium and vascular tissues. Introduction of an intron-less version of the Gmubi promoter (Gmupri) displayed almost the same GFP expression pattern albeit at lower intensities. The Gmubi promoter showed high levels of constitutive expression and represents an alternative to viral promoters for driving gene expression in soybean.  相似文献   

15.
16.
17.
18.
19.
Effects of tissue type and promoter strength on transient GUS expression in the sugarcane (Saccharum spp. hybrids) cultivar NCo 310 were evaluated following microprojectile bombardment of leaf explants. GUS expression was histochemically or fluorometrically measured 48 h after delivery of the uidA gene. High levels of GUS expression were obtained in leaf segments isolated from young, expanding sugarcane leaves cultured for 1, 3, or 6 d prior to bombardment. The promoter derived from the maize ubiquitin 1 gene (Ubi-1) produced significantly more GUS foci and higher GUS activity levels compared to the recombinant Emu, rice actin 1 (Act1), and CaMV 35S promoters. Our transient expression system should facilitate efforts to identify promoters and elements which will regulate desired gene expression patterns in sugarcane and aid in development of an efficient stable transformation system.Abbreviations Act1 rice actin 1 gene - CaMV cauliflower mosaic virus - GUS ß-glucuronidase - Ubi-1 maize ubiquitin 1 gene - uidA GUS gene - X-Glu 5-bromo-4-chloro-3-indoylglucuronide  相似文献   

20.
By the techniques of DNA shuffling, PCR, and restriction-ligation, chimeric forms of cauliflower (Brassica oleracea) mosaic virus (CaMV), dahlia (Dahlia pinnata) mosaic virus (DMV), and carnation (Dianthus caryophillus) etching ring virus (CERV) promoters were obtained at various combinations. Twelve chimeric promoters were cloned into pCambia binary vectors comprising the reporter GUS gene, and their activities in transgenic tobacco (Nicotiana tabacum) plants were determined fluorimetrically. 35S promoter and those of DMV (442 bp) and CERV (371 and 501 bp) were used as controls. Seven of analyzed promoters displayed higher and seven promoters lower activity in transgenic tobacco plants than 35S promoter. The highest activity was characteristic of natural DMV promoter, and the least one — natural CERV promoter 501 bp in size. The CERV promoter 371 bp in size was approximately similar in strength to 35S promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号