首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

2.
The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day) or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day) for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.  相似文献   

3.
BackgroundEvidence indicates the positive effects of zinc on insulin resistance and oxidative stress in metabolic syndrome or diabetes. Non-alcoholic fatty liver disease (NAFLD) is the main hepatic manifestation of insulin resistance and metabolic syndrome. The present study is the first clinical trial that evaluated the effects of zinc supplementation on metabolic and oxidative stress status in overweight/obese patients with NAFLD undergoing calorie- restriction diet. Methods: Fifty six overweight/obese patients with confirmed mild to moderate NAFLD using ultrasonography were randomly allocated to receive 30 mg elemental zinc supplement (n = 29) or placebo (n = 27) along with weight loss diet for 12 weeks. Serum levels of zinc, homeostasis model of assessment-estimated insulin resistance (HOMA-IR), lipid profile, serum superoxide dismutas1 (SOD1) and malondialdhyde (MDA) levels were assessed.ResultsSerum levels of insulin, SOD1, MDA and HOMA-IR were improved in the treatment group (p < 0.05). Within group comparison showed significant reduction in serum FBS, HbA1C, TC, LDL-c and TG in the treatment group. Conclusion: Zinc supplementation for three months improved insulin resistance and oxidative stress status in overweight/obese NAFLD patients with no beneficial effects on lipid profiles over weight loss diet. Registration ID in IRCT (IRCT NO: 20181005041238N1).  相似文献   

4.
AIMS/HYPOTHESIS: There is evidence that acarbose reduces the risk for development of diabetes and cardiovascular complications. The mechanism underlying the vasculoprotective effect is however not known. We hypothesized that vasculoprotection observed by acarbose may be the consequence of a diminished generation of oxidative stress. METHODS: Lean and obese Zucker rats received a diet containing 10% sucrose for 7 days. A part of the rats was treated with acarbose (15 mg/kg/day in chow). Blood glucose, plasma insulin, lipid peroxides, and as a more specific marker of oxidative stress, 8-isoprostanes, were analyzed. As cellular markers of oxidative stress we determined the activities of mitochondrial aconitase and NADPH-oxidase in aorta, heart, and kidney. In addition, poly(ADP-ribose) polymerase activity (PARP) was measured in aorta. RESULTS: Sucrose feeding of obese Zucker rats resulted in increased blood glucose levels, plasma insulin, lipid peroxides and 8-isoprostanes. Mitochondrial aconitase was reduced; the activities of NAPDH-oxidase and PARP were enhanced. Treatment of obese Zucker rats with acarbose largely prevented these changes, whereas it had no effect in lean sucrose fed rats. CONCLUSION: Specifically in obese Zucker rats sucrose feeding is associated with an increased oxidative stress. The data provide IN VIVO evidence that mitochondria play a role in the generation of reactive oxygen species (ROS) in insulin resistant, hyperglycaemic states. Activation of PARP by ROS may be an important mediator of vascular dysfunction in insulin resistance. Treatment with acarbose is helpful to prevent the increase in oxidative stress and vascular dysfunction induced by hyperglycemia.  相似文献   

5.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   

6.
Central obesity is associated with low-grade inflammation that promotes type 2 diabetes and cardiovascular disease in obese individuals. The 12- and 5-lipoxygenase (12-LO and 5-LO) enzymes have been linked to inflammatory changes, leading to the development of atherosclerosis. 12-LO has also been linked recently to inflammation and insulin resistance in adipocytes. We analyzed the expression of LO and proinflammatory cytokines in adipose tissue and adipocytes in obese Zucker rats, a widely studied genetic model of obesity, insulin resistance, and the metabolic syndrome. mRNA expression of 12-LO, 5-LO, and 5-LO-activating protein (FLAP) was upregulated in adipocytes and adipose tissue from obese Zucker rats compared with those from lean rats. Concomitant with increased LO gene expression, the 12-LO product 12-HETE and the 5-LO products 5-HETE and leukotriene B4 (LTB4) were also increased in adipocytes. Furthermore, upregulation of key proinflammatory markers interleukin (IL)-6, TNFα, and monocyte chemoattractant protein-1 were observed in adipocytes isolated from obese Zucker rats. Immunohistochemistry indicated that the positive 12-LO staining in adipose tissue represents cells in addition to adipocytes. This was confirmed by Western blotting in stromal vascular fractions. These changes were in part reversed by the novel anti-inflammatory drug lisofylline (LSF). LSF also reduced p-STAT4 in visceral adipose tissue from obese Zucker rats and improved the metabolic profile, reducing fasting plasma glucose and increasing insulin sensitivity in obese Zucker rats. In 3T3-L1 adipocytes, LSF abrogated the inflammatory response induced by LO products. Thus, therapeutic agents reducing LO or STAT4 activation may provide novel tools to reduce obesity-induced inflammation.  相似文献   

7.
The obese Zucker rat is resistant to insulin for glucose disposal, but it is unknown whether this insulin resistance is accompanied by alterations of insulin-mediated muscle protein synthesis. We examined rates of muscle protein synthesis either with or without insulin in lean and obese Zucker rats with the use of a bilateral hindlimb preparation. Additional experiments examined insulin's effect on protein synthesis with or without rapamycin, an inhibitor of protein synthesis. Protein synthesis in red and white gastrocnemius was stimulated by insulin compared with control (no insulin) in obese (n = 10, P<0.05) but not in lean (n = 10, P>0.05) Zucker rats. In white gastrocnemius, rapamycin significantly reduced rates of protein synthesis compared with control in lean (n = 6) and obese (n = 6) rats; however, in red gastrocnemius, the attenuating effect of rapamycin occurred only in obese rats. The addition of insulin to rapamycin resulted in rates of synthesis that were similar to those for rapamycin alone for lean rats and to those for insulin alone (augmented) for obese rats in both tissues. Our results demonstrate that insulin enhances protein synthesis in muscle that is otherwise characterized as insulin resistant. Furthermore, rapamycin inhibits protein synthesis in muscle of obese Zucker rats; however, stimulation of protein synthesis by insulin is not via a rapamycin-sensitive pathway.  相似文献   

8.
Diabetes results in several metabolic changes, including alterations in the transport, distribution, excretion, and accumulation of metals. While changes have been examined in several rat models of insulin resistance and diabetes, the metal ion concentrations in the tissues of Zucker lean, Zucker obese (an insulin resistance and early stage diabetes model), and Zucker diabetic fatty (ZDF, a type 2 diabetes model) have not previously been examined in detail. The concentration of Cu, Zn, Fe, Mg, and Ca were examined in the liver, kidney, heart and spleen, and Cr concentration in the liver and kidney of these rats were examined. Zucker obese rats have a reduction in the concentration of Cu, Zn, Fe, Mg in the liver compared to ZDF and/or lean Zucker rats, presumably as a result of the increased fat content of the liver of the obese rats. ZDF rats have increased concentrations of kidney Cu compared to the lean rats, while kidney Ca concentrations are increased in the Zucker obese rats. Spleen Fe concentrations are decreased in Zucker obese rats compared to the lean rats. No effects on metal concentrations in the heart were observed between the lean, obese, and ZDF rats, and no effects on Cr concentrations were identified. Cr(III) complexes have previously been shown to have beneficial effects on the signs of insulin resistance in Zucker obese and ZDF rats. The effects of daily gavage administration of chromium picolinate ([Cr(pic)3]) (1 mg?Cr/kg body mass), CrCl3 (1 mg?Cr/kg body mass), and Cr3 ([Cr3O(propionate)6(H2O)3]+) (33 μg and 1 mg?Cr/kg body mass) on metal concentrations in these tissues were examined. Treatment with CrCl3 and Cr3, but not [Cr(pic)3], at 1 mg?Cr/kg resulted in a statistically significant accumulation of Cr in the kidney of lean and obese but not ZDF rats but resulted in lowering the elevated levels of kidney Cu in ZDF rats, suggesting a beneficial effect on this symptom of type 2 diabetes.  相似文献   

9.
The relationship between insulin resistance and mitochondrial function is of increasing interest. Studies looking for such interactions are usually made in muscle and only a few studies have been done in liver, which is known to be a crucial partner in whole body insulin action. Recent studies have revealed a similar mechanism to that of muscle for fat-induced insulin resistance in liver. However, the exact mechanism of lipid metabolites accumulation in liver leading to insulin resistance is far from being elucidated. One of the hypothetical mechanisms for liver steatosis development is an impairment of mitochondrial function. We examined mitochondrial function in fatty liver and insulin resistance state using isolated mitochondria from obese Zucker rats. We determined the relationship between ATP synthesis and oxygen consumption as well as the relationship between mitochondrial membrane potential and oxygen consumption. In order to evaluate the quantity of mitochondria and the oxidative capacity we measured citrate synthase and cytochrome c oxidase activities. Results showed that despite significant fatty liver and hyperinsulinemia, isolated liver mitochondria from obese Zucker rats display no difference in oxygen consumption, ATP synthesis, and membrane potential compared with lean Zucker rats. There was no difference in citrate synthase and cytochrome c oxidase activities between obese and lean Zucker rats in isolated mitochondria as well as in liver homogenate, indicating a similar relative amount of hepatic mitochondria and a similar oxidative capacity. Adiponectin, which is involved in bioenergetic homeostasis, was increased two-fold in obese Zucker rats despite insulin resistance. In conclusion, isolated liver mitochondria from lean and obese insulin-resistant Zucker rats showed strictly the same mitochondrial function. It remains to be elucidated whether adiponectin increase is involved in these results.  相似文献   

10.
Inflammation and oxidative stress are believed to contribute to hypertension in obesity/diabetes. Recently, we reported a role for the AT(2) receptor in blood pressure control in obese Zucker rats. However, the role of AT(2) receptors in inflammation and oxidative stress in obesity is not known. Therefore, in the present study, we tested the effects of the AT(2) receptor agonist CGP-42112A on inflammation and oxidative stress in obese Zucker rats and compared them in their lean counterparts. Rats were systemically treated with either vehicle (control) or CGP-42112A (1 μg·kg(-1)·min(-1); osmotic pump) for 2 wk. Markers of inflammation (CRP, MCP-1, TNF-α, and IL-6) and oxidative stress (HO-1, gp-91(phox)) as well as an antioxidant (SOD) were determined. Control obese rats had higher plasma levels of CRP, MCP-1, TNF-α, IL-6, and HO-1 compared with control lean rats. Conversely, plasma SOD activity was lower in control obese than in control lean rats. Furthermore, the protein levels of TNF-α and gp-91(phox) were higher in the kidney cortex of control obese rats. Interestingly, CGP-42112A treatment in obese rats reduced the plasma and kidney cortex inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers and increased plasma SOD activity to the levels seen in lean control rats. However, CGP-42112A treatment in lean rats increased inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers in the plasma and kidney cortex. Our present studies suggest anti-inflammatory and antioxidative functions of AT(2) receptor in obese Zucker rats but proinflammatory and prooxidative functions in lean Zucker rats.  相似文献   

11.

Background

Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat.

Methods

Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique.

Results

Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance) pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT) was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W.

Conclusions

In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS.  相似文献   

12.
The aim of this study was to analyze the effects of chronic administration of high doses of quercetin on metabolic syndrome abnormalities, including obesity, dyslipidemia, hypertension, and insulin resistance. For this purpose, obese Zucker rats and their lean littermates were used. The rats received a daily dose of quercetin (2 or 10 mg/kg of body weight) or vehicle for 10 weeks. Body weight and systolic blood pressure (SBP) were recorded weekly. At the end of the treatment, plasma concentrations of triglycerides, total cholesterol, free-fatty acids (FFAs), glucose, insulin, adiponectin, and nitrate plus nitrite (NOx) were determined. Tumor necrosis factor-alpha (TNF-alpha) production, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) protein expression were analyzed in visceral adipose tissue (VAT). The raised SBP and high plasma concentrations of triglycerides, total cholesterol, FFA, and insulin found in obese Zucker rats were reduced in obese rats that received either of the doses of quercetin assayed. The higher dose also improved the inflammatory status peculiar to this model, as it increased the plasma concentration of adiponectin, reduced NOx levels in plasma, and lowered VAT TNF-alpha production in obese Zucker rats. Furthermore, chronic intake of the higher dose of quercetin enhanced VAT eNOS expression among obese Zucker rats, whereas it downregulated VAT iNOS expression. In conclusion, both doses of quercetin improved dyslipidemia, hypertension, and hyperinsulinemia in obese Zucker rats, but only the high dose produced antiinflammatory effects in VAT together with a reduction in body weight gain.  相似文献   

13.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

14.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

15.
1. The effect of insulin upon glucose transport and metabolism in soleus muscles of genetically obese (fa/fa) and heterozygote lean Zucker rats was investigated at 5–6 weeks and 10–11 weeks of age. Weight-standardized strips of soleus muscles were used rather than the intact muscle in order to circumvent problems of diffusion of substrates. 2. In younger obese rats (5–6 weeks), plasma concentrations of immunoreactive insulin were twice those of controls, whereas their circulating triacylglycerol concentrations were normal. Insulin effects upon 2-deoxyglucose uptake and glucose metabolism by soleus muscles of these rats were characterized by both a decreased sensitivity and a decrease in the maximal response of this tissue to the hormone. 3. In older obese rats (10–11 weeks), circulating concentrations of insulin and triacylglycerols were both abnormally elevated. A decrease of 25–35% in insulin-binding capacity to muscles of obese rats was observed. The soleus muscles from the older obese animals also displayed decreased sensitivity and maximal response to insulin. However, at a low insulin concentration (0.1m-i.u./ml), 2-deoxyglucose uptake by muscles of older obese rats was stimulated, but such a concentration was ineffective in stimulating glucose incorporation into glycogen, and glucose metabolism by glycolysis. 4. Endogenous lipid utilization by muscle was calculated from the measurements of O2 consumption, and glucose oxidation to CO2. The rate of utilization of fatty acids was normal in muscles of younger obese animals, but increased in those of the older obese rats. Increased basal concentrations of citrate, glucose 6-phosphate and glycogen were found in muscles of older obese rats and may reflect intracellular inhibition of glucose metabolism as a result of increased lipid utilization. 5. Thus several abnormalities are responsible for insulin resistance of muscles from obese Zucker rats among which we have observed decreased insulin binding, decreased glucose transport and increased utilization of endogenous fatty acid which could inhibit glucose utilization.  相似文献   

16.
The secretory function of the exocrine pancreas has been studied in dispersed pancreatic acini from obese and homozygous lean Zucker rats at 6 and 22 wk. No abnormality was found in acini from young rats. Acini from 22 wk obese and lean rats were equally responsive to secretagogues which stimulate cAMP, i.e. vasoactive intestinal peptide (VIP) and secretin. By contrast, there was a reduction in the maximum responsiveness to caerulein and carbamylcholine in acini from obese rats. These latter secretagogues act through mobilization of intracellular Ca2+. Since obese animals are insulin resistant and amylase release is modulated by insulin, the role of insulin resistance in the secretory defect was then investigated. A group of 22 wk obese rats received treatment with Ciglitazone (a drug which reduces insulin resistance in obese laboratory animals) for 4 wk before the secretion study. Despite the expected reduction in insulin resistance there was no improvement of the secretory defect seen with caerulein and carbamylcholine stimulation. Thus, the secretory abnormality in the exocrine pancreas of adult obese Zucker rats does not appear to be directly associated with insulin resistance. Furthermore, the secretory defect is linked to those secretagogues which induce Ca2+-independent phosphoinositide hydrolysis and Ca2+ mobilization in the target cell.  相似文献   

17.
The relationship between beta-endorphin(beta-EP)/beta-lipotropin(beta-LP) and insulin secretion in the basal state and after glucose challenge was studied in obese male Zucker rats and their lean littermates. Baseline plasma beta-EP/beta-LP concentrations were similar in the two groups of animals. Baseline plasma insulin and serum glucose concentrations were significantly higher in the obese animals. Following glucose challenge, the increase in plasma beta-EP/beta-LP concentrations was significantly lower in the obese animals than in their lean littermates. Opioid blockade with naloxone failed to alter the baseline hyperinsulinemia and hyperglycemia seen in the obese animals. The data suggest that the hyperinsulinemia in the obese Zucker rat is not due to endogenous hyperendorphinemia as shown in humans with polycystic ovary syndrome. The obese rats showed dissociation between glucose-stimulated plasma levels of beta-EP/beta-LP and insulin levels which may contribute to the hyperinsulinemia and insulin resistance in these animals.  相似文献   

18.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

19.
Insulin plays a major role in the control of pancreatic amylase biosynthesis. In this study we determined glucose metabolism by pancreatic acini as well as the pancreatic content of both amylase protein and amylase mRNA during development of insulin resistance in the obese Zucker rat. At age 4 weeks there were no abnormalities detected in the above parameters, although the obese animals were already hyperinsulinaemic. At 6 weeks glucose metabolism was decreased by 50% in acini from obese rats, whereas pancreatic amylase-gene expression was only slightly impaired. At 22 weeks glucose metabolism was decreased by 50%, amylase content by 55% and amylase mRNA by 60% in acinar tissue of obese rats. As expected, hyperinsulinaemia increased markedly with age. Thus development of severe insulin resistance was associated with impairment of amylase-gene expression. To decrease insulin resistance, one group of adult obese rats was treated with Ciglitazone for 4 weeks. A lowered plasma insulin concentration without alteration of food intake was taken as evidence of decreased insulin resistance. This was associated with normalization of glucose metabolism and a marked increase of both amylase content of pancreatic tissue and amylase mRNA. In conclusion, both the increase of insulin resistance with age and its partial reversal by Ciglitazone treatment appear to modulate pancreatic amylase-gene expression in the obese Zucker rat.  相似文献   

20.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号