首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of lipid peroxidation in renal ischemia/reperfusion was explored by measuring changes in the cortical content of specific primary lipid hydroperoxides (using chemluminescent detection with HPLC) following ischemia and reperfusion and by correlating the changes in hydroperoxide content with measurements of renal blood flow. Phosphatidylcholine and phosphatidylethanolamine hydroperoxide concentrations were significantly lowered during 30 or 60 min of ischemia (to levels less than 50% of control at 60 min). Following 30 min of renal ischemia, reperfusion resulted in a rebound of phospholipid hydroperoxide tissue content to levels higher than controls. Increased phospholipid hydroperoxide formation was not, however, observed in response to reperfusion following long-term (60 min) ischemia. In separate animals it was demonstrated that following 30 min ischemia and reperfusion, renal blood flow recovers to about 65% of control in 1 h. In contrast, following 60 min ischemia and reperfusion, the renal blood flow remains more highly impaired (less than 25% recovery for periods up to 24 h). These results imply that phospholipid hydroperoxides are produced and accumulate in the kidneys under normal aerobic conditions and that lipid peroxidative activity increases during renal ischemia/reperfusion to an extent dependent on the degree of local blood perfusion.  相似文献   

2.
Rats were subjected to bilateral carotid artery occlusion for 30 min, followed by reperfusion for varying time periods. The concentration of reduced and oxidized glutathione, glutathione peroxidase and glutathione reductase were determined in whole brain after varying periods of reperfusion. Lipid peroxidation was also assessed by determining the levels of malondialdehyde (MDA) in the brain. Reperfusion for 1 hr following bilateral carotid artery occlusion resulted in significant decrease in total glutathione (GSH) concentration along with small but significant increase in oxidized glutathione (GSSG) levels. After 4 hr of reperfusion, GSH levels recovered, although GSSG levels remained elevated up to 12 hr of reperfusion. Increase in malondialdehyde levels was also detected in the brain up to 12 hr of reperfusion. Glutathione reductase activity remained significantly low up to 144 hr of reperfusion, while glutathione peroxidase activity remained unaffected. These results demonstrate that oxidative stress is generated in the brain during reperfusion following partial ischemia due to bilateral carotid artery occlusion.  相似文献   

3.
Free radicals, calcium overloading and loss of membrane phospholipids play an important role in the development of ischemia/reperfusion (I/R) injury. Melatonin is a well-known antioxidant and free radical scavenger. Melatonin may also reduce the intracellular calcium overloading and inhibit lipid peroxidation. This study was designed to investigate the effects of melatonin on the I/R-induced cardiac infarct size in an in vivo rat model. We also investigated glutathione (GSH) levels, an antioxidant the levels of which are influenced by oxidative stress, and malondialdehyde (MDA) levels, which is an index of lipid peroxidation. To produce cardiac damage, the left main coronary artery was occluded for 30 min, followed by 120 min reperfusion, in anesthetized rats. Melatonin (10 mg/kg) or vehicle was given 10 min before ischemia via the jugular vein. Infarct size, expressed as the percentage of the risk zone, was found significantly greater in I/R group than in the melatonin-treated I/R group. MDA levels were significantly higher, but GSH levels were lower in the I/R group than in the control group. Melatonin significantly reduced the MDA values and increased the GSH levels. These results suggest that oxidative stress contributes to myocardial I/R injury and melatonin administration exerts a mitigating effect on infarct size. Furthermore, the results indicated that melatonin improves the antioxidant capacity of the heart and attenuates the degree of lipid peroxidation after I/R.  相似文献   

4.
Kupffer cell-derived oxidant stress is critical for reperfusion injury after no-flow ischemia. However, the importance of Kupffer cells as source of reactive oxygen formation is unclear in a hemorrhagic shock model. Therefore, we evaluated Kupffer cell activation after 60 or 120 min of hemorrhage and 90 min of resuscitation (HS/RS) in pentobarbital-anesthetized male Fischer rats. Plasma glutathione disulfide (GSSG) as indicator for a vascular oxidant stress showed no significant changes after HS/RS. Plasma ALT activities were only moderately increased (100-200 U/L). Kupffer cells isolated from postischemic livers did not generate more superoxide than cells from sham controls. In contrast, the 10-fold increase of plasma GSSG and the 9-fold higher spontaneous superoxide formation of Kupffer cells after 60 min of hepatic no-flow ischemia followed by 90 min of reperfusion demonstrated the activation of Kupffer cells in this experimental model. Plasma ALT activities (1930 +/- 240 U/L) indicated severe liver injury. These results demonstrate a fundamental difference in the degree of Kupffer cell activation between the two models of warm hepatic ischemia. Our findings suggest that different therapeutic strategies are necessary to ameliorate the initial injury after low flow ischemia (hemorrhage) compared to cold (transplantation) or warm (Pringle maneuver) no-flow ischemia.  相似文献   

5.
The objectives of this study were to determine 1) whether reactive oxygen species generated upon postischemic reperfusion lead to oxidative stress in rat hearts, and 2) whether an exogenous prooxidant present in the early phase of reperfusion causes additional injury. Isolated buffer-perfused rat hearts were subjected to 30 min of hypothermic no-flow ischemia followed by 30 min of reperfusion. Increased myocardial content of glutathione disulfide (GSSG) and increased active transport of GSSG were used as indices of oxidative stress. To impose a prooxidant load, cumene hydroperoxide (20 M) was administered during the first 10 min of reperfusion to a separate group of postischemic hearts. Reperfusion after 30 min of hypothermic ischemia resulted in a recovery of myocardial ATP from 28% at end-ischemia to 50–60%, a release of 5% of total myocardial LDH, and an almost complete recovery of both coronary flow rate and left ventricular developed pressure. After 5 and 30 min of reperfusion, neither myocardial content of GSSG nor active transport of GSSG were increased. These indices were increased, however, if cumene hydroperoxide was administered during early reperfusion. After stopping the administration of cumene hydroperoxide, myocardial GSSG content returned to control values and GSH content increased, indicating an unimpaired glutathione reductase reaction. Despite the induction of oxidative stress, reperfusion with cumene hydroperoxide did not cause additional metabolic, structural, or functional injury when compared to reperfusion without cumene hydroperoxide. We conclude that reactive oxygen species generated upon postischemic reperfusion did not lead to oxidative stress in isolated rat hearts. Moreover, even a superimposed prooxidant load during early reperfusion did not cause additional injury.  相似文献   

6.
The extent of brain injury during reperfusion appears to depend on the experimental pattern of ischemia/reperfusion. The goals of this study were: first, to identify the rate of free radicals generation and the antioxidant activity during ischemia and reperfusion by means of biochemical measurement of lipid peroxidation (LPO) and both enzymatic (superoxid dismutase - SOD, catalase - CAT, glutathion peroxidase - GPx) and non-enzymatic antioxidants activity (glutathione - GSH); and second, to try to find out how the pattern of reperfusion may influence the balance between free radical production and clearance. Wistar male rats were subject of four-vessel occlusion model (Pulsinelly & Brierley) cerebral blood flow being controlled by means of two atraumatic arterial microclamps placed on carotid arteries. The level of free radicals and the antioxidant activity were measured in ischemic rat brain tissue homogenate using spectrophotometrical techniques. All groups subjected to ischemia shown an increase of LPO and a reduction of the activity of enzymatic antioxidative systems (CAT, GPx, SOD) and non-enzymatic systems (GSH). For both groups subjected to ischemia and reperfusion, results shown an important increase of LPO but less significant than the levels found in the group with ischemia only. Statistically relevant differences (p<0.01) between continuous reperfusion and fragmented reperfusion were observed concerning the LPO, CAT, SOD and GSH levels, oxidative aggresion during fragmented reperfusion being more important.  相似文献   

7.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

8.
The pathophysiological importance of reactive oxygen species has been extensively documented in the pathogenesis of hepatic ischema-reperfusion injury. Kupffer cells and neutrophils were identified as the dominant sources of the postischemic oxidant stress. To test the hypothesis that a direct free radical-mediated injury mechanism (lipid peroxidation; LPO) may be involved in the pathogenesis, highly sensitive and specific parameters of LPO, i.e., hydroxy-eicosatetraenoic acids (HETES), and F2-isoprostanes, were determined by gas chromatographic-mass spectrometric analysis in liver tissue and plasma during 45 min of hepatic ischemia and up to 24 h of reperfusion. A significant 60–250% increase of F2-isoprostane levels in plasma was found at all times during reperfusion; the HETE content increased only significantly at 1 h of reperfusion and in severely necrotic liver tissue at 24 h with increases between 90–320%. On the other hand, in a model of LPO-induced liver injury (infusion of 0.8 μmol tert-butylhydroperoxide/min/g liver), the hepatic HETE content increased two to fourfold over baseline values at 45 min, i.e., before liver injury. A further increase to 12- to 30-fold of baseline was observed during moderate liver injury. Based on these quantitative comparisons of LPO and liver injury, it seems highly unlikely that LPO is the primary mechanism of parenchymal cell injury during reperfusion, although it cannot be excluded that LPO may be important as a damaging mechanism in a limited compartment of the liver, e.g., endothelial cells, close to the sources of reactive oxygen, e.g., Kupffer cells and neutrophils.  相似文献   

9.
Reperfusion injury of the liver occurs in liver transplantation and in major hepatectomies. It triggers a severe oxidative stress that leads to increased lipid peroxidation. In our study we examined the effect of parenteral supranutritional administration of alpha-tocopherol, a vitamin that plays a key role in the endogenous antioxidant system, to rats subjected to severe ischemia/reperfusion (I/R) injury of the liver. alpha-Tocopherol was administered to the animals at doses of 30 and 300 mg/kg bw, whereas total hepatic ischemia was induced for 60 min followed by 120 min reperfusion. Tissue and blood samples were collected for malonyldialdehyde (MDA) and serum alpha-tocopherol assay, respectively. In the sham operation group, mean MDA level in liver was 1.14 nmole/g wet tissue in the control subgroup, and 1.01 or 0.74 nmole/g wet tissue in the subgroups given 30 or 300 mg/kg alpha-tocopherol. In the I/R group, mean MDA level was 1.57 nmole/g wet tissue in the control subgroup, and 0.97 and 0.77 nmole/g wet tissue in the subgroups given 30 or 300 mg/kg alpha-tocopherol. Mean levels of alpha-tocopherol in serum (mumole/l) were 10.20 and 1.80 in the control subgroups, 25.28 and 11.25 in the subgroups treated with 30 and 300 mg/kg bw of alpha-tocopherol, and 31.00 and 13.02 in the subgroups treated with 30 and 300 mg/kg bw of alpha-tocopherol, within the sham-operation and I/R groups, respectively. A significant decrease of MDA accompanied by a significant increase of serum alpha-tocopherol was documented in the alpha-tocopherol-treated rats within both groups. Ischemia/reperfusion triggered a significant increase of the MDA level in the liver of the rats not treated with alpha-tocopherol as compares with the treated animals.  相似文献   

10.
Lipid peroxidation--an initial event in experimental acute renal failure   总被引:2,自引:0,他引:2  
A method was developed to monitor the occurrence of lipid peroxidation (LPO) during ischemia and Na-maleate-induced acute renal failure (ARF) on male rats in vivo by measuring malondialdehyde (MDA) levels in arterial and renal venous blood and in urine. No signs of LPO could be detected under control conditions. In ischemic ARF produced by 45 min of renal artery clamping a steep increase of MDA was found in the renal venous effluent immediately after starting reperfusion. This effect was nearly abolished after 5 min of blood reflow while glomerular filtration remained at 5% of control value during a 90-min postischemic observation period. Intoxication with Na-maleate leads to enhanced LPO in combination with an impaired renal function 2 h after administration. These findings would well explain cellular damage and some aspects of renal dysfunction associated with the initiation phase of ARF.  相似文献   

11.
Oxidative stress is a recognized factor of ischemia reperfusion injury. It shares damage of lipids (LPO) and proteins (PPO), and consequently might cause changes in activity of transport systems. Global 15 min ischemia followed by 2, 24 and 48 hour reperfusion was induced by four-vessel occlusion in Wistar rats of both sexes. Levels of TBARS and conjugated dienes as parameters of LPO were analyzed in forebrain homogenates. Concentrations of total free sulfhydryl (SH) groups and emission spectra of tryptophan were measured to quantify PPO. Our results indicate that lipid peroxidation and protein oxidation occurs mainly during the period of reperfusion. However, significant increase in the level of conjugated dienes can be detected already after 15 min ischemia. Attack of proteins by free radicals leads to modification in structure of proteins seen as a decrease of free SH groups and tryptophan fluorescence. Ischemia/reperfusion induces formation of lipid peroxidation products as well as protein modifications.  相似文献   

12.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

13.
The aim of this study was to evaluate the time course events of cellular damage during myocardial ischemia and reperfusion injury in rats and to find out a correlation between the structural alterations with respect to the biochemical changes. Cardiac biomarkers and lysosomal enzymes viz. cathepsin D, acid phosphatase and β-glucuronidase and matrix metalloproteinases (MMPs) were evaluated at different time points, in response to ischemia-reperfusion induced oxidative stress in an isolated rat heart model perfused in Langendorff mode. Microscopically, changes in myocardial architecture, myofibrillar degradation, and collagen (COL) integrity were studied using hematoxylin-eosin, Masson’s trichrome and toluidine blue staining techniques. A three-fold increase in the level of myoglobin was observed after 30 min of ischemia followed by 120 min of reperfusion as compared to 15 min ischemia, 120 min reperfusion. Similarly, a significant increase (P < 0.05) in the levels of lipid peroxides and superoxide anion coupled with a decrease in enzymatic and nonenzymatic antioxidant levels were observed. A concomitant increase in the activity of cathepsin D (24.07 ± 0.95) and a higher expression of MMPs after 120 min of reperfusion following 30 min ischemia were shown to correlate with the myocardial damage as shown by histopathology, suggesting that free radical induced activation of cathepsin D and MMPs could mediate early damage during myocardial ischemia and reperfusion.  相似文献   

14.
Rabbit kidneys were subjected to 120min of warm ischaemia or to 120min of warm ischaemia followed by 60min reperfusion with blood in vivo before being removed, homogenised and incubated at 37°C for 90min. Lipid extracts were obtained and monitored for Schiff base (fluorescence emission 400-450 nm, excited at 360 nm), thiobarbituric acid (TBA)-reactive material (emission 553 nm, excited at 515 nm) and diene conjugates (absorbance at 237 nm). Samples removed before incubation were assayed for reduced glutathione (GSH) and oxidised glutathione (GSSG) to provide an index of glutathione redox activity (GSH : GSSG). Allopurinol injected systemically i.v. (a) 15mins before kidneys were clamped. (b) 15mins before they were reperfused or (c) as two injections (before clamping and before reperfusion) significantly inhibited these biochemical markers of lipid peroxidation. Administration before reperfusion had a markedly more pronounced effect than when allopurinol was given before warm ischaemia only. It is concluded that allopurinol is probably effective because of its ability to inhibit xanthine oxidase and consequently lipid peroxidation during reperfusion rather than by preventing loss of purine nucleotides from hypoxic cells during ischaemia.  相似文献   

15.
目的探讨NAS对肝缺血再灌注所诱导的脂质过氧化损伤产生的保护作用。方法采用夹闭肝蒂法30min、再灌注6h制作肝缺血再灌注模型,冰冻切片,HE染色,光学显微镜下观察肝细胞形态结构的变化;比色法检测损伤后血清中谷丙转氨酶(ALT)水平及肝组织中超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH—Px)的含量。结果夹闭肝蒂30min、再灌注6h后,肝小叶结构紊乱、肝血窦淤血,其间有白细胞浸润、肝细胞出现变性、坏死;血清中ALT水平升高,肝组织中s0D和GSH—Px的含量降低,MDA升高;NAS可减少缺血再灌注后血清ALT的释放,使肝组织中SOD和GSHPx的含量升高,MDA的含量降低;NAS+Luz可逆转NAS的这一作用。结论NAS对肝缺血再灌注小鼠的氧化应激损伤具有保护作用。  相似文献   

16.
The aim of this study was to test the hypothesis that a decreased myocardial concentration of reduced glutathione (GSH) during ischemia renders the myocardium more susceptible to injury by reactive oxygen species generated during early reperfusion. To this end, rats were pretreated with L-buthionine-S,R-sulfoximine (2 mmol/kg), which depleted myocardial GSH by 55%. Isolated buffer-perfused hearts were subjected to 30 min of either hypothermic or normothermic no-flow ischemia followed by reperfusion. Prior depletion of myocardial GSH did not lead to oxidative stress during reperfusion, as myocardial concentration of glutathione disulfide (GSSG) was not increased after 5 and 30 min of reperfusion. In addition, prior depletion of GSH did not exacerbate myocardial enzyme release, nor did it impair the recoveries of tissue ATP, coronary flow rate and left ventricular developed pressure during reperfusion after either hypothermic or normothermic ischemia. Even administration of the prooxidant cumene hydroperoxide (20 M) to postischemic GSH-depleted hearts during the first 10 min of reperfusion did not aggravate postischemic injury, although this prooxidant load induced oxidative stress, as indicated by an increased myocardial concentration of GSSG. These results do not support the hypothesis that a reduced myocardial concentration of GSH during ischemia increases the susceptibility to injury mediated by reactive oxygen species generated during reperfusion. Apparently, myocardial tissue possesses a large excess of GSH compared to the quantity of reactive oxygen species generated upon reperfusion. (Mol Cell Biochem 156: 79-85, 1996)  相似文献   

17.
McAnulty JF  Waller K 《Cryobiology》1999,39(3):197-204
Rabbit kidney cortex tissue slices were made ischemic (37 degrees C) for 60 min and then either reperfused in warm (37 degrees C) oxygenated physiologic buffer for 210 min or placed in UW Na gluconate solution (+/- quinacrine; 100 micromol/L) for 18 h followed by warm aerobic reperfusion. Slices were sampled at intervals and analyzed for malondialdehyde (MDA) content by HPLC. Control (nonischemic) slices had no change in MDA content over the duration of the experiment. Hypothermic storage of nonischemic slices did not result in any increase in MDA during reperfusion. Ischemic slices showed significant increases in MDA content during the first 1.5 h of reperfusion and remained elevated for the remainder of the experiment. Hypothermic storage of warm ischemic kidney slices resulted in a significant decrease in MDA content during the storage period. However, MDA content in these slices increased during warm reperfusion and was significantly higher than that in nonischemic controls. Quinacrine added during hypothermic storage of warm ischemic slices significantly decreased slice MDA content during warm reperfusion, an effect which was lost by increasing the storage solution calcium content. This study shows that aerobic hypothermic storage can aid in reducing oxidative stress in warm ischemic kidney tissue during reperfusion. This study suggests that the effects of quinacrine are at the level of the mitochondrion and not as an antioxidant compound.  相似文献   

18.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

19.
Reperfusion of rat kidney submitted to temporal ischaemia induces a decrease in glutathione content. Lipid peroxidation is not detected in kidney homogenates but microsomes obtained after periods of reperfusion longer than 60 minutes show increased malondialdehyde values correlated with high oxygen consumption and superoxide free radical generation. Microsomes obtained from kidneys submitted to 15 or 60 minutes of reperfusion are resistant to NADPH-induced lipid peroxidation but after 120 minutes of reperfusion an increased lipid peroxidative response is observed. Although the mechanism of the protection found in microsomes against the induction of oxidative stress in the first 60 minutes of reperfusion is unknown, it is postulated that this subcellular fraction plays an important role in the oxidative stress observed after longer periods of reperfusion.  相似文献   

20.
Evidence suggests that aldehydic molecules generated during lipid peroxidation (LPO) are causally involved in most pathophysiological processes associated with oxidative stress. 4-Hydroxy-2-nonenal (4-HNE), the LPO-derived product, is believed to be responsible for much of the cytotoxicity. To counteract the adverse effects of this aldehyde, many tissues have evolved cellular defense mechanisms, which include the aldehyde dehydrogenases (ALDHs). Our laboratory has previously characterized the tissue distribution and metabolic functions of ALDHs, including ALDH3A1, and demonstrated that these enzymes may play a significant role in protecting cells against 4-HNE. To further characterize the role of ALDH3A1 in the oxidative stress response, a rabbit corneal keratocyte cell line (TRK43) was stably transfected to overexpress human ALDH3A1. These cells were studied after treatment with 4-HNE to determine their abilities to: (a) maintain cell viability, (b) metabolize 4-HNE and its glutathione conjugate, (c) prevent 4-HNE-protein adduct formation, (d) prevent apoptosis, (e) maintain glutathione homeostasis, and (f) preserve proteasome function. The results demonstrated a protective role for ALDH3A1 against 4-HNE. Cell viability assays, morphological evaluations, and Western blot analyses of 4-HNE-adducted proteins revealed that ALDH3A1 expression protected cells from the adverse effects of 4-HNE. Based on the present results, it is apparent that ALDH3A1 provides exceptional protection from the adverse effects of pathophysiological concentrations of 4-HNE such as may occur during periods of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号