首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the ability of human anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL) to lyse autologous human fibroblasts infected with HSV. In contrast to HSV-infected human Epstein-Barr virus-transformed B cells (LCL), which were lysed by HLA-restricted anti-HSV CTL, autologous fibroblasts infected with HSV were resistant to lysis. This resistance was not due to a lack of infectivity or production of HSV proteins since greater than 90% of the cells were infected and expressed abundant levels of viral proteins. HSV-infected human fibroblasts were also tested for susceptibility to lysis by alloantigen-specific CTL. Although allogeneic LCL and uninfected allogeneic fibroblasts were killed, human fibroblasts infected with HSV demonstrated a time-dependent resistance to lysis by alloantigen-specific CTL. HSV-infected human fibroblasts were not resistant to all forms of cell-mediated cytotoxicity since they were sensitive to antibody-dependent cellular cytotoxicity. Although one may suspect that the resistance of HSV-infected human fibroblasts to anti-HSV CTL and alloantigen-specific CTL-mediated lysis was due to a lack of major histocompatibility complex expression, Confer et al. (Proc. Natl. Acad. Sci. USA 87:3609-3613, 1990) previously demonstrated that incubation of human natural killer and lymphokine-activated killer cells with monolayers of human fibroblasts infected with HSV "disarmed" the killers in that they were unable to lyse sensitive target cells. We extend their results and show that incubation of anti-HSV CTL or alloantigen-specific CTL with uninfected fibroblasts did not affect their lytic activity, whereas CTL incubated with HSV-infected fibroblasts for 2 to 6 h rendered the CTL incapable of lysing their normally sensitive target cells. Indeed, human fibroblasts infected for merely 2 h with HSV were able to profoundly inhibit the cytotoxic activity of alloantigen-specific CTL. Thus, HSV-infected human fibroblasts are not inherently resistant to lysis by anti-HSV CTL or alloantigen-specific CTL, but rather contact of CTL with HSV-infected fibroblasts resulted in inactivation of the CTL. The inactivation of CTL appears to be HSV specific since incubation of alloantigen-specific CTL in sandwich assays with fibroblasts infected with HSV type 1 (HSV-1) or HSV-2 resulted in inactivation, whereas incubation of CTL with fibroblasts infected with adenovirus or vaccinia virus had no effect. Further, although incubation of alloantigen-specific CTL in sandwich assays with HSV-infected fibroblasts resulted in inhibition of CTL activity, exposure of CTL in Transwell cultures to cell-free supernatant from HSV-infected fibroblasts did not mediate this inhibitory effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Previous studies from our laboratory indicated that human NK activity against HSV-infected fibroblasts (HSV-Fs) but not K562 targets was sensitive to treatment with anti-HLA-DR plus C. In the current study, we have selected Leu-11a+ (CD-16) cells by fluorescence activated cell sorting and found that although Leu-11a enriched populations lysed K562 targets in 14-h 51Cr-release assays, they were unable to kill HSV-Fs targets unless a Leu-11a-depleted population was added back to the effectors or unless known activators of NK cells (IFN-alpha or IL-2) were added to the assays. In contrast, Leu-11a-enriched populations were able to mediate ADCC against HSV-Fs in the presence of sera from HSV-seropositive individuals without the requirement for accessory cells. We have begun preliminary characterization of the accessory cells which allow lysis of HSV-Fs by NK cells: they are HLA-DR+ cells which enrich in the light density fractions of Metrizamide density gradients. They need be present in very small numbers for lysis to take place and are not MHC restricted in that heterologous add-backs between anti-HLA-DR plus C and anti-Leu-11b plus C-treated populations are capable of target cell lysis at levels similar to those achieved with the autologous add-backs. Further, the levels of lysis in heterologous add-back experiments reflected the lytic potential of the effector rather than the accessory cell donor. Finally, although the requirement for accessory cells for NK lysis has been demonstrated for fibroblasts infected with HSV-1, CMV, and VZV, lysis of HSV-infected Raji lymphoblastoid cells is relatively accessory-cell independent, indicating that the requirement for accessory cells for lysis by NK cells is not a property of all herpesvirus-infected targets.  相似文献   

3.
NIH 3T3 tertiary transfectants containing the N-ras or c-Ha-ras oncogenes derived from human tumors were tested for susceptibility to lymphokine-activated killer (LAK) cell and natural killer (NK) cell lysis. N-ras tertiary transfectants contained a human acute lymphocytic leukemia-derived N-ras oncogene. C-Ha-ras transfectants contained either the position 61-activated form of the oncogene (45.342, 45.322, and 45.3B2) or the position 12-activated form (144-162). In 4 hr 51Cr release assays, seven of seven in vivo grown human oncogene transfected NIH 3T3 fibroblasts were lysed by murine LAK effectors, whereas six of seven were lysed by human LAK effectors. There was no difference in susceptibility to lysis between cells transfected with the N-ras oncogene, the position 61 activated c-Ha-ras oncogene, or the position 12 activated c-Ha-ras oncogene. Cultured NIH 3T3 fibroblasts, as well as in vitro and in vivo grown NIH 3T3 tertiary transfectants were resistant to lysis by murine NK effectors and were relatively resistant (4/6 were not lysed) to lysis by human NK effectors. We conclude that human oncogene-transfected tumors are susceptible to lysis by both murine and human LAK cells while being relatively resistant to lysis by murine and human NK cells. Different oncogenes or the same oncogene activated by different point mutations do not specifically determine susceptibility to lysis by LAK or NK. Also the presence of an activated oncogene does not appear to be sufficient for inducing susceptibility to these cytotoxic lymphocyte populations.  相似文献   

4.
Murine cytomegalovirus (MCMV) is a natural killer (NK) cell-sensitive virus, whereas lymphocytic choriomeningitis virus (LCMV) is an NK cell-resistant virus. Selective depletion of NK cell activity by injection of mice with anti-asialo GM1 antibody enhanced synthesis of MCMV but not that of LCMV when mice were simultaneously infected with the two viruses. This suggests that the NK cell-mediated antiviral effects may depend on target cell susceptibility to NK cell-mediated lysis rather than the ability of a virus to induce a specialized antiviral NK cell. In support of this concept, activated NK cells isolated from either MCMV- or LCMV-infected mice had similar patterns of killing against all targets tested. Mouse embryonic fibroblasts (MEF) infected with MCMV were less sensitive to lysis by activated NK cells than either uninfected or LCMV-infected MEF. However, when MEF were pretreated with IFN, activated NK cell-mediated lysis against MCMV-infected MEF was undiminished and was much higher (up to fourfold) than that against uninfected MEF, whose sensitivity to lysis was almost totally abolished by IFN pretreatment. LCMV-infected MEF were also protected by IFN against activated NK cell-mediated lysis. During infection, the virus-induced IFN may protect uninfected and LCMV-infected cells from IFN-activated, NK cell-mediated lysis, but MCMV-infected cells may remain sensitive to lysis. This could explain how NK cells play a role in resistance to MCMV but not LCMV.  相似文献   

5.
We used human tuberculosis as a model to investigate the role of NK cytotoxic mechanisms in the immune response to intracellular infection. Freshly isolated NK cells and NK cell lines from healthy donors lysed Mycobacterium tuberculosis-infected monocytes to a greater extent than uninfected monocytes. Lysis of infected monocytes was associated with increased expression of mRNA for the NKp46 receptor, but not the NKp44 receptor. Antisera to NKp46 markedly inhibited lysis of infected monocytes. NK cell-mediated lysis was not due to reduced expression of MHC class I molecules on the surface of infected monocytes or to enhanced production of IL-18 or IFN-gamma. NK cell lytic activity against M. tuberculosis-infected monocytes and NKp46 mRNA expression were reduced in tuberculosis patients with ineffective immunity to M. tuberculosis compared with findings in healthy donors. These observations suggest that 1) the NKp46 receptor participates in NK cell-mediated lysis of cells infected with an intracellular pathogen, and 2) the reduced functional capacity of NK cells is associated with severe manifestations of infectious disease.  相似文献   

6.
The present study was undertaken to evaluate the possible contribution of other cytokines to the lytic activity of NKCF-containing supernatants. We compared some of the functional properties of human NKCF and purified recombinant human rLT and rTNF. It was found that the target cell specificity of rLT was quite different from NKCF in that rLT was neither species specific nor NK specific. Furthermore, antibodies against rLT did not affect the lytic activity of NKCF. These results demonstrate that LT does not significantly contribute to the lytic activity mediated by NKCF. The target specificity of rTNF was found to be related to that of NKCF with the exception of one NK-resistant cell line that was lysed by rTNF in a 20-hr 51Cr-release assay. However, rTNF was not toxic to any of the target cells tested as assessed by trypan blue exclusion in a 20-hr assay unless the targets were labeled with 51Cr. In contrast, NKCF did kill target cells as detected by trypan blue exclusion that were not labeled with 51Cr. Further analysis of this mechanistic difference in the lytic activity of rTNF and NKCF revealed that rTNF in combination with either cycloheximide or mitomycin C but not IFN-gamma could lyse unlabeled U937 target cells. In addition, pretreatment of U937 target cells with nonradioactive Na2CrO4 at concentrations equivalent to that used to 51Cr-labeled cells resulted in their susceptibility to lysis by rTNF as assessed by trypan blue exclusion. These findings suggest that lysis of several susceptible target cells in 20 hr by rTNF requires the presence of additional agents that may be sublethally toxic and/or inhibitory to macromolecular synthesis. Antibody inhibition studies revealed that anti-TNF mediated from partial to complete inhibition of lysis of U937 by unfractionated supernatants containing NKCF. However, fractionation of such supernatants on chromatofocusing columns yielded two distinct peaks of activity eluting in the pH range of 5 to 6 and 7 to 8. Anti-TNF could inhibit the acidic form of NKCF but not the neutral form. It is concluded that NKCF activity is mediated in part by TNF or an antigenically related molecule as well as some other distinct factor(s). The lack of consistent inhibition of NK CMC by anti-TNF suggests that TNF alone is not sufficient to mediate NK activity, or else it is inaccessible to the added antibody.  相似文献   

7.
Freshly isolated human peripheral blood monocytes and in vitro monocyte-derived macrophages were infected with HSV type 1 and used as target cells in a cell-mediated cytotoxicity assay. PBMC from both HSV-immune and non-immune donors were stimulated in vitro for 5 days with UV-inactivated HSV Ag and used as effector cells. Effectors from HSV-immune donors mediated virus-specific lysis of both monocyte and macrophage targets, whereas effectors from non-immune donors failed to mediate target cell lysis. Mean virus-specific lysis of autologous monocytes was (8.5 +/- (+/- 2.0)%) compared to a threefold greater virus-specific lysis of autologous macrophages (24.7 (+/- 4.3)%). More than 70% of this lysis was mediated by CD16- T lymphocytes. Further analysis demonstrated that the majority of the lysis against autologous and allogeneic targets was HLA-DR-restricted and mediated by CD4+ CTL. However, CD8+ CTL also contributed to the lysis of autologous targets as well as allogeneic targets having a common HLA-A and/or -B determinant. The HLA-restricted cytotoxicity was virus-specific as HSV-infected, but not CMV-infected, cells were lysed. CTL-mediated lysis of HSV-infected monocytes and macrophages may be of significance in the anti-viral and immunoregulatory host response.  相似文献   

8.
The role of Ca2+ in cell-mediated cytotoxicity has been the subject of many investigations and both Ca2+-dependent and -independent pathways have been reported. TNF was suggested to play a role in NK and macrophage cell-mediated cytotoxicity. We assumed that its role in target cell lysis might take place by a Ca2+-independent mechanism. This hypothesis was investigated in assays of rTNF-mediated lysis of tumor target cells. Extracellular Ca2+ depletion by the calcium chelator EGTA (2 mM and 5 mM) and blocking of intracellular Ca2+ mobilization by 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride did not inhibit TNF-mediated tumor cell lysis. Furthermore, blocking of Ca2+ influx in the presence of the Ca2+ channel blocker Verapamil did not inhibit TNF-mediated tumor cell lysis. Previous reports showed that lysis of sensitive tumor cells by TNF is preceded by binding of TNF to TNF receptors, internalization, and DNA degradation. These events were tested in the absence of Ca2+. Treatment with Ca2+ inhibitors did not affect binding of 125I-TNF to target cells. Also TNF induced the fragmentation of cellular DNA in target cells without extracellular or intracellular Ca2+. These findings demonstrate that the mechanism of TNF-mediated tumor cell lysis does not depend on intracellular or extracellular Ca2+ and that events associated with target cell lysis can also function in the absence of Ca2+. Thus, our findings support the contention of a Ca2+-independent lytic pathway in which secreted or membrane-bound TNF may interact with the target cells and ultimately result in DNA degradation and target cell lysis.  相似文献   

9.
SV40 transformation of rodent fibroblasts generally produces cells that are highly sensitive to killing by activated macrophages. The cell line SV-COL-E8 (E8) is typical of SV40-transformed mouse fibroblasts in that it is readily lysed when exposed to activated macrophages. This killing is not due solely to TNF, because soluble TNF alone is incapable of lysing these cells. TNF is, however, necessary for lysis since antibodies to TNF will prevent macrophage-mediated lysis. Similarly, E8 is not sensitive to nitric oxide (NO); however, NO is also necessary for lysis since inhibition of NO generation (by coincubation with the arginine analogue NG-monomethyl-1-arginine) with Fe(II)) blocks lysis of E8 by activated macrophages. Cytolysis by macrophages is contact dependent, suggesting that the cell-associated TNF precursor may be involved in mediating cytolysis. However, transfected cell lines bearing cell-associated TNF precursor do not mediate killing of E8. Thus, killing of E8 either involves both TNF and NO in addition to a third, as yet unidentified, lytic mechanism, or killing requires the contact-dependent delivery of TNF and NO from the macrophage to its target.  相似文献   

10.
Previous studies have demonstrated that in general, nucleated cells are more resistant to killing by serum complement than are erythrocytes. During studies aimed at defining the mechanisms of nucleated cell resistance, we found that the human histiocytic cell line U937 was easily lysed by homologous serum. U937 cells were also killed by serum depleted of C9, but not by serum depleted of C8, implying that the C5b-8 complex was sufficient to cause lysis of these cells. Enumeration of complexes on the cell surface demonstrated that approximately 40-fold more complexes were required to lyse U937 cells in the absence of C9 than in the presence of an excess of C9. Examination of the effects of small amounts of C9 on lysis of U937 cells by the C5b-8 complex demonstrated that at very low doses, C9 inhibited C5b-8 mediated lysis. The use of radiolabeled anti-C8 antibody showed that C5b-8 complexes were eliminated from the surface of U937 cells at 37 degrees C, and C9 at the dose causing inhibition of lysis accelerated the elimination of complexes. These results suggest that the increased lytic potential resulting from binding of small amounts of C9 to C5b-8 complexes is outweighed by enhanced elimination of complexes resulting in decreased cell death.  相似文献   

11.
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells use multiple mechanisms to destroy their target cells. Pore formation resulting in osmotic lysis of the target is one mechanism; the pore-forming protein (perforin) responsible for this activity has been purified. Antigenically and functionally it resembles proteins of the membrane attack complex of complement. The other known mediators of cytotoxicity appear to be closely interrelated. Tumor necrosis factor (TNF), lymphotoxin (LT), and leukalexin are the three members of this group that have been purified, although their mechanisms of action are still unknown. CTLs fragment the DNA of target cells, as do TNF, LT, and leukalexin; this may be one of the mechanisms of action of these mediators. CTLs and NK cells do not self lyse. The basis of this phenomenon is unclear, although recent advances have shed some light on the problem.  相似文献   

12.
The mechanism by which HER2/neu overexpressing tumor cells resist NK, LAK, and LDCC cytotoxic lymphocytes was investigated. Resistance was not explained by a delay in kinetics of lysis, concurrent resistance to TNF, or a diminished expression of the transferrin receptor. HLA-class I expression, however, was markedly elevated compared to HER2 nonexpressing targets suggesting a reason for resistance. To test the role of class I, we selectively decreased expression by incubation of targets with beta-2 microglobulin anti-sense oligonucleotides. Anti-sense-treated HER2+ targets, displaying levels of class I comparable to HER2- targets, were still markedly resistant to cytotoxic effectors. Down-regulation of class I expression in HER2- carcinoma cells also had no effect on sensitivity to cytotoxicity by anti-sense treatment of Raji and U937 targets resulted in enhanced sensitivity to NK and LAK effectors but not to T cells mediating LDCC. These data indicate resistance to cytotoxicity in HER2-expressing targets cannot be solely explained by heightened expression of class I. The data also support the concept that class I expression regulates sensitivity to NK and LAK cells (but not LDCC effectors) in selected targets.  相似文献   

13.
Previous results that were obtained by using supernatants from the co-culture of human peripheral blood lymphocytes and the natural killer susceptible cell line K562 strongly inhibited the growth of various tumor cell lines. No correlation was observed between the susceptibility of the target cell lines to growth inhibition and to lysis by natural killer cells. Rather the spectrum of cytostatic activity and the characteristics of the soluble factor were similar to those of leukoregulin (LRG), a recently described lymphokine. Because of the recent availability of recombinant tumor necrosis factor (TNF) and lymphotoxin (LT), we compare the target selectivity and mechanism of action of these (TNF, LT, LRG) factors with natural killer cytotoxic factor (NKCF). The pattern of target cell susceptibility to growth inhibition or cytolysis by the factors were quite distinct from the pattern observed when cells were exposed to NKCF. Furthermore, antibodies to rLT or rTNF had no effect on LRG cytostasis or NKCF lysis, arguing against a requirement for or synergistic interaction with low levels of LT or TNF. Some of the targets susceptible to LRG were growth inhibited but were not lysed, thereby distinguishing it from NKCF. Furthermore, LRG cytostasis was not inhibited by mannose-6-PO4 or rabbit antibodies to granule cytolysin, both of which block natural killer cytotoxic factor. Therefore, LRG appears to be a cytostatic factor produced by large granular lymphocytes in response to K562 that is distinct from NKCF, TNF, and LT. In addition, NKCF, rLT, rTNF, and LRG, although having cytotoxic/cytostatic activity, are distinct functional factors and may represent a family of lytic factors.  相似文献   

14.
Normal chondrocytes are targets for natural killer (NK) cells. Since the mechanism of this phenomenon remains unknown, the present study was aimed at testing whether it is associated with chondrocyte-specific phenotype defined as ability of cartilage cells to produce sulfated glycosaminoglycans (GAG) and express collagen II and aggrecan mRNA. Lysis of rat epiphyseal chondrocytes by syngeneic spleen mononuclear cells (SMCs) was evaluated by 51Cr-release assay. Loss of chondrocyte phenotype following long-term culture resulted in their decreased susceptibility to lysis. Similar effect was also observed after suppression of chondrocyte phenotype by TNF. On the other hand, stimulation of cartilage-specific matrix component synthesis by IGF-1 resulted in increased chondrocyte killing and exogenous chondroitin sulfate A stimulated NK cell-mediated cytotoxicity against chondrocytes and human K562 cells. This suggests that chondrocyte susceptibility to lysis by NK cells depends on chondrocyte-specific phenotype, especially sulfated GAG production.  相似文献   

15.
Summary This study has addressed the question of whether there may be some common mechanism underlying the induction or expression of acquired cytokine and drug resistance in a tumor cell line. This study employed the tumor-necrosis-factor(TNF)-sensitive U937 tumor cell line as a model system to determine if selection of a tumor cell variant for cytokine resistance would also result in drug resistance and vice versa. Variants were selected by culturing in the presence of purified recombinant TNF or a mixed-lymphokine-containing supernatant derived from concanavalin-A-stimulated peripheral blood lymphocytes. The resulting variants were resistant not only to TNF, but also to certain chemotherapeutic drugs. The variants were most resistant to colchicine and theVinca alkaloids, requiring drug concentrations 50- to 5000-fold higher to mediate levels of cytotoxicity comparable to that seen with the parental U937. The variants were moderately resistant to cycloheximide, actinomycin D, and mitomycin C. In contrast, these lines were relatively sensitive to doxorubicin or daunomycin. This phenomenon was not unique to U937 cells since we obtained a similar pattern of drug resistance by selecting TNF-resistant variants of the WEHI-164 tumor cell line. The cytokine-selected U937 variants were still lysed by NK cells, although they were somewhat less sensitive than the parental U937. Both variants were relatively resistant to lysis by activated macrophages, probably because of their TNF resistance. In an alternative selection procedure, U937 variants were derived by culturing in the presence of increasing concentrations of colchicine. The resulting variants were relatively resistant to TNF, providing further support for the existence of some common mechanism operating in induction or expression of acquired cytokine and drug resistance. The resistance mechanism apparently does not involve the P glycoprotein since the cytokine-selected U937 variants do not overexpress the mdr gene. This study has demonstrated that selection of TNF-resistant variants results in coexpression of a unique form of drug resistance that is characterized by resistance to microtubule-active drugs but not to the anthracycline antibiotics and is not associated with overexpression of the mdr gene.This work was supported by grant CA 47 669-01 awarded by the National Cancer Institute Nomenclature of variants: U9-LKR, U937 variant selected by lymphokines; U9-TR, U937 variant selected by tumor necrosis factor (TNF); WEHI-TR, WEHI-164 variant selected by TNF  相似文献   

16.
Although NK cells can kill both malignant cells and virus-infected cells without prior sensitization, it has remained unclear whether the mechanism by which an NK cell is activated in the presence of a tumor cell is similar to that induced by the presence of a virus-infected cell. In our experimental system using homogeneous populations of cloned human CD16+ NK cells, we found that HSV-infected target cells do not induce in the NK cells the same pharmacologically-active second messengers elicited by NK-sensitive tumor cells. Although phosphoinositide turnover and calcium signaling were generated in NK cells exposed to NK-sensitive tumor cells, the recognition of HSV-infected cells by NK cells did not result in similar transmembrane signaling. Furthermore, depending on the cell type infected by HSV, alternative mechanisms of cytotoxicity were employed. HSV-infected foreskin fibroblasts were rapidly and selectively killed by cloned NK cells without a requirement for IFN or accessory cells. In contrast to this direct cytotoxicity against HSV-infected foreskin fibroblasts, NK cell-mediated cytotoxicity against an HSV-infected fibrosarcoma cell line (1591) was dependent on IFN-alpha production by accessory cells. Importantly, in both systems of cytotoxicity, IFN-alpha activation of NK cells resulted in augmented killing against both infected and uninfected targets. These results suggest that NK cell activation induced during antiviral immunity is distinct from activation elicited during an antitumor response. These differences include the utilization of alternative forms of signal transduction and alternative mechanisms of cytotoxicity.  相似文献   

17.
NK cells mediate their cytotoxicity against tumor cells through abroad array of cytotoxic and cytostatic proteins. We investigated whether specific proteins could also be identified that contributed to NK cell-mediated antiviral immunity. Human CD16+/CD3- NK cells were obtained by using FACS and subsequently cloned by using limiting dilution. These NK cell lines, which were cytotoxic against NK-sensitive tumor targets and virally infected cells, also generated supernatants that selectively killed vesicular stomatitis virus-infected cells while sparing noninfected cells. This soluble antiviral activity was completely neutralized by antibodies specific for TNF and lymphotoxin. Purified human rTNF also duplicated this specific cytotoxicity against vesicular stomatitis virus-infected cells, as well as against CMV-, Theiler's murine encephalomyelitis virus-, and HSV-infected cells. The degree of cytotoxicity varied for the different viruses and depended on the cell type infected. These results suggest that NK cells can mediate selective and direct cytotoxicity against virally infected cells by the secretion of TNF and lymphotoxin.  相似文献   

18.
An H-2Kb- negative clone of BL6 melanoma (BL6-8) was transfected with neor, H-2Kb, or H-2IAk genes. In an 18-h cytotoxicity assay clones with high levels of H-2Kb Ag expression were found more sensitive to lysis by spleen cells of syngenic and allogeneic mice than H-2Kb low clones. NK cells were involved in the lysis of H-2Kb+ BL6 melanoma clones, with spleen cell cytotoxicity of mice increased after poly I:C stimulation or decreased after pretreatment with anti-asialo GM1 serum or NK1.1 mAb. Anti-TNF Ab were also able to reduce the cytotoxicity of normal spleen cells and completely abolished the cytotoxicity of the NK-depleted spleen cells suggesting involvement of NC cells in lysis of H-2Kb+ BL6 melanoma clones. Increase in sensitivity of H-2Kb+ BL6 cells to natural cell-mediated cytotoxicity was associated with the appearance of NK recognizable determinants as assessed by the cold target inhibition assay. All BL6 clones, irrespective of sensitivity to natural cell-mediated cytotoxicity, showed high sensitivity to lysis by LGL-derived granules. In contrast, all H-2Kb low BL6 clones were resistant and all H-2Kb highly positive clones were sensitive to lysis by TNF-alpha. When an H-2Kb highly positive clone was selected in vitro for resistance to TNF, it concomitantly showed increased resistance to cytotoxicity by spleen cells, confirming the importance of TNF in spleen cell cytotoxicity against H-2Kb+ melanoma cells. Taken together, the data indicate that class I H-2Kb but not class II H-2IAk gene product could increase the sensitivity of BL6 cells to lysis by NK and natural cytotoxic cells as well as TNF. We hypothesize that these effects could be due to pleiotropic effects of H-2Kb gene products on various biologic properties of BL6 melanoma cells some of which may be more directly involved in regulation of tumor cell sensitivity to lysis by NK and/or natural cytotoxic cells.  相似文献   

19.
The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells.  相似文献   

20.
Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. The levels of virus-directed lysis varied widely from target to target, and we found that differences in virus-directed lytic efficiency could be attributed both to the characteristics of HSV-1 replication in the different targets and to the subgroup of natural effector cells which mediated lysis. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, we used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). We also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. Using complement-mediated elimination of Qa-5-positive or asialo-GM1-positive NK cells to distinguish NK from NC activity, we found that NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. In addition, we showed that both NK and NC cytotoxicities contributed to the lysis against the HSV-1-infected fibroblastoid line, M50, but the infected PU51R cells were killed by only NK effectors. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the 51Cr-release assay in the presence of anti-interferon serum. Because NC activity was not augmented by interferon, virus-enhanced NC lysis of M50-HSV and WEHI-HSV was not due to this nonspecific mechanism. Together, our data show that HSV-1 infection of NK/NC targets induces increased cytotoxicity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号