首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of population bottlenecks on the components of the genetic variance generated by two neutral independent epistatic loci has been studied theoretically (VA, additive; VD, dominant; VAA, additive x additive; VAD, additive x dominant; VDD; dominant x dominant components of variance). Nonoverdominance and overdominance models were considered, covering all possible types of marginal gene action at the single locus level. The variance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium, after t consecutive bottlenecks of equal size N (derived components). Formulae were obtained in terms of allele frequencies and effects at each locus and the corresponding epistatic value. An excess of VA after bottlenecks can be assigned to two sources: (1) the spatiotemporal changes in the marginal average effects of gene substitution alpha(i), which are equal to zero only for additive gene action within and between loci; and (2) the covariance between alpha2(i) and the heterozygosity at the loci involved, which is generated by dominance, with or without epistasis. Numerical examples were analyzed, indicating that an increase in VA after bottlenecks will only occur if its ancestral value is minimal or very small. For the nonoverdominance model with weak reinforcing epistasis, that increase has been detected only for extreme frequencies of the negative allele at one or both loci. With strong epistasis, however, this result can be extended to a broad range of intermediate frequencies. With no epistasis, the same qualitative results were found, indicating that dominance can be considered as the primary cause of an increase in VA following bottlenecks. In parallel, the derived total nonadditive variance exceeded its ancestral value (V(NA) = V(D) + V(AA) + V(AD) + V(DD)) for a range of combinations of allele frequencies covering those for an excess of VA and for very large frequencies of the negative allele at both loci. For the overdominance model, an increase in V(A) and V(NA) was respectively observed for equilibrium (intermediate) frequencies at one or both loci or for extreme frequencies at both loci. For all models, the magnitude of the change of V(A) and V(NA) was inversely related to N and t. At low levels of inbreeding, the between-line variance was not affected by the type of gene action. For the models considered, the results indicate that it is unlikely that the rate of evolution may be accelerated after population bottlenecks, in spite of occasional increments of the derived V(A) over its ancestral value.  相似文献   

2.
The effect of population bottlenecks on the components of the genetic covariance generated by two neutral independent epistatic loci has been studied theoretically (additive, covA; dominance, covD; additive-by-additive, covAA; additive-by-dominance, covAD; and dominance-by-dominance, covDD). The additive-by-additive model and a more general model covering all possible types of marginal gene action at the single-locus level (additive/dominance epistatic model) were considered. The covariance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium over replicates randomly derived from the base population, after t consecutive bottlenecks of equal size N (derived components). Formulae were obtained in terms of the allele frequencies and effects at each locus, the corresponding epistatic effects and the inbreeding coefficient Ft. These expressions show that the contribution of nonadditive loci to the derived additive covariance (covAt) does not linearly decrease with inbreeding, as in the pure additive case, and may initially increase or even change sign in specific situations. Numerical examples were also analyzed, restricted for simplicity to the case of all covariance components being positive. For additive-by-additive epistasis, the condition covAt > covA only holds for high frequencies of the allele decreasing the metric traits at each locus (negative allele) if epistasis is weak, or for intermediate allele frequencies if it is strong. For the additive/dominance epistatic model, however, covAt > covA applies for low frequencies of the negative alleles at one or both loci and mild epistasis, but this result can be progressively extended to intermediate frequencies as epistasis becomes stronger. Without epistasis the same qualitative results were found, indicating that marginal dominance induced by epistasis can be considered as the primary cause of an increase of the additive covariance after bottlenecks. For all models, the magnitude of the ratio covAt/covA was inversely related to N and t.  相似文献   

3.
The effect of population bottlenecks on the mean and the additive variance generated by two neutral independent epistatic loci has been studied theoretically. Six epistatic models, used in the analysis of binary disease traits, were considered. Ancestral values in an infinitely large panmictic population were compared with their expectations at equilibrium, after t consecutive bottlenecks of equal size N (derived values). An increase in the additive variance after bottlenecks (inversely related to N and t) will occur only if the frequencies of the negative allele at each locus are: (1) low, invariably associated to strong inbreeding depression; (2) high, always accompanied by an enhancement of the mean with inbreeding. The latter is an undesirable property, making the pertinent models unsuitable for the genetic analysis of disease. For the epistatic models considered, it is unlikely that the rate of evolution may be accelerated after population bottlenecks, in spite of occasional increments of the derived additive variance over its ancestral value.  相似文献   

4.
We apply new analytical methods to understand the consequences of population bottlenecks for expected additive genetic variance. We analyze essentially all models for multilocus epistasis that have been numerically simulated to demonstrate increased additive variance. We conclude that for biologically plausible models, large increases in expected additive variance--attributable to epistasis rather than dominance--are unlikely. Naciri-Graven and Goudet (2003) found that as the number of epistatically interacting loci increases, additive variance tends to be inflated more after a bottleneck. We argue that this result reflects biologically unrealistic aspects of their models. Specifically, as the number of loci increases, higher-order epistatic interactions become increasingly important in these models, with an increasing fraction of the genetic variance becoming nonadditive, contrary to empirical observations. As shown by Barton and Turelli (2004), without dominance, conversion of nonadditive to additive variance depends only on the variance components and not on the number of loci per se. Numerical results indicating that more inbreeding is needed to produce maximal release of additive variance with more loci follow directly from our analytical results, which show that high levels of inbreeding (F > 0.5) are needed for significant conversion of higher-order components. We discuss alternative approaches to modeling multilocus epistasis and understanding its consequences.  相似文献   

5.
López-Fanjul C  Fernández A  Toro MA 《Genetics》2003,164(4):1627-1633
For neutral additive genes, the quantitative index of population divergence (Q(ST)) is equivalent to Wright's fixation index (F(ST)). Thus, divergent or convergent selection is usually invoked, respectively, as a cause of the observed increase (Q(ST) > F(ST)) or decrease (Q(ST) < F(ST)) of Q(ST) from its neutral expectation (Q(ST) = F(ST)). However, neutral nonadditive gene action can mimic the additive expectations under selection. We have studied theoretically the effect of consecutive population bottlenecks on the difference F(ST) - Q(ST) for two neutral biallelic epistatic loci, covering all types of marginal gene action. With simple dominance, Q(ST) < F(ST) for only low to moderate frequencies of the recessive alleles; otherwise, Q(ST) > F(ST). Additional epistasis extends the condition Q(ST) < F(ST) to a broader range of frequencies. Irrespective of the type of nonadditive action, Q(ST) < F(ST) generally implies an increase of both the within-line additive variance after bottlenecks over its ancestral value (V(A)) and the between-line variance over its additive expectation (2F(ST)V(A)). Thus, both the redistribution of the genetic variance after bottlenecks and the F(ST) - Q(ST) value are governed largely by the marginal properties of single loci. The results indicate that the use of the F(ST) - Q(ST) criterion to investigate the relative importance of drift and selection in population differentiation should be restricted to pure additive traits.  相似文献   

6.
We analyze the changes in the mean and variance components of a quantitative trait caused by changes in allele frequencies, concentrating on the effects of genetic drift. We use a general representation of epistasis and dominance that allows an arbitrary relation between genotype and phenotype for any number of diallelic loci. We assume initial and final Hardy-Weinberg and linkage equilibrium in our analyses of drift-induced changes. Random drift generates transient linkage disequilibria that cause correlations between allele frequency fluctuations at different loci. However, we show that these have negligible effects, at least for interactions among small numbers of loci. Our analyses are based on diffusion approximations that summarize the effects of drift in terms of F, the inbreeding coefficient, interpreted as the expected proportional decrease in heterozygosity at each locus. For haploids, the variance of the trait mean after a population bottleneck is var(delta(z)) = sigma(n)k=1 FkV(A(k)), where n is the number of loci contributing to the trait variance, V(A(1)) = V(A) is the additive genetic variance, and V(A(k)) is the kth-order additive epistatic variance. The expected additive genetic variance after the bottleneck, denoted (V*(A)), is closely related to var(delta(z)); (V*(A)) = (1 - F) sigma(n)k=1 kFk-1V(A(k)). Thus, epistasis inflates the expected additive variance above V(A)(1 - F), the expectation under additivity. For haploids (and diploids without dominance), the expected value of every variance component is inflated by the existence of higher order interactions (e.g., third-order epistasis inflates (V*(AA. This is not true in general with diploidy, because dominance alone can reduce (V*(A)) below V(A)(1 - F) (e.g., when dominant alleles are rare). Without dominance, diploidy produces simple expressions: var(delta(z)) = sigma(n)k=1 (2F)kV(A(k)) and (V(A)) = (1 - F) sigma(n)k=1 k(2F)k-1V(A(k)). With dominance (and even without epistasis), var(delta(z)) and (V*(A)) no longer depend solely on the variance components in the base population. For small F, the expected additive variance simplifies to (V*(A)) approximately equal to (1 - F)V(A) + 4FV(AA) + 2FV(D) + 2FC(AD), where C(AD) is a sum of two terms describing covariances between additive effects and dominance and additive X dominance interactions. Whether population bottlenecks lead to expected increases in additive variance depends primarily on the ratio of nonadditive to additive genetic variance in the base population, but dominance precludes simple predictions based solely on variance components. We illustrate these results using a model in which genotypic values are drawn at random, allowing extreme and erratic epistatic interactions. Although our analyses clarify the conditions under which drift is expected to increase V(A), we question the evolutionary importance of such increases.  相似文献   

7.
Abstract We investigated the role of the number of loci coding for a neutral trait on the release of additive variance for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices. First, we extended Cheverud and Routman's model by defining matrices of "pure" epistasis for three and four independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distributions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant role in the increase of additive variance following bottlenecks.  相似文献   

8.
Inbreeding is known to reduce heterozygosity of neutral genetic markers, but its impact on quantitative genetic variation is debated. Theory predicts a linear decline in additive genetic variance (V(A)) with increasing inbreeding coefficient (F) when loci underlying the trait act additively, but a nonlinear hump-shaped relationship when dominance and epistasis are important. Predictions for heritability (h2) are similar, although the exact shape depends on the value of h2 in the absence of inbreeding. We located 22 published studies in which the level of genetic variation in experimentally inbred populations (measured by V(A) or h2) was compared with that in outbred control populations. For life-history traits, the data strongly supported a nonlinear change in genetic variation with increasing F. V(A) and h2 were, respectively, 244% and 50% higher at F = 0.4 than in outbred populations, and dominance plus epistatic variance together exceeded additive variance by a factor of four. For nonfitness traits the decline was linear and estimates of nonadditive variance were small. These results confirm that population bottlenecks frequently increase V(A) in some traits, and imply that life-history traits are underlain by substantial dominance or epistasis. However, the importance of drift-induced genetic variation in conservation or evolutionary biology is questionable, in part because inbreeding depression usually accompanies inbreeding.  相似文献   

9.
Summary A genetic model with either 64 or 1,600 unlinked biallelic loci and complete dominance was used to study prediction of additive and dominance effects in selected or unselected populations with inbreeding. For each locus the initial frequency of the favourable allele was 0.2, 0.5, or 0.8 in different alternatives, while the initial narrow-sense heritability was fixed at 0.30. A population of size 40 (20 males and 20 females) was simulated 1,000 times for five generations. In each generation 5 males and 10 or 20 females were mated, with each mating producing four or two offspring, respectively. Breeding individuals were selected randomly, on own phenotypic performance or such yielding increased inbreeding levels in subsequent generations. A statistical model containing individual additive and dominance effects but ignoring changes in mean and genetic covariances associated with dominance due to inbreeding resulted in significantly biased predictions of both effects in generations with inbreeding. Bias, assessed as the average difference between predicted and simulated genetic effects in each generation, increased almost linearly with the inbreeding coefficient. In a second statistical model the average effect of inbreeding on the mean was accounted for by a regression of phenotypic value on the inbreeding coefficient. The total dominance effect of an individual in that case was the sum of the average effect of inbreeding and an individual effect of dominance. Despite a high mean inbreeding coefficient (up to 0.35), predictions of additive and dominance effects obtained with this model were empirically unbiased for each initial frequency in the absence of selection and 64 unlinked loci. With phenotypic selection of 5 males and only 10 females in each generation and 64 loci, however, predictions of additive and dominance effects were significantly biased. Observed biases disappeared with 1,600 loci for allelic frequencies at 0.2 and 0.5. Bias was due to a considerable change in allelic frequency with phenotypic selection. Ignoring both the covariance between additive and dominance effects with inbreeding and the change in dominance variance due to inbreeding did not significantly bias prediction of additive and dominance effects in selected or unselected populations with inbreeding.  相似文献   

10.
Covariance between relatives in a multibreed population was derived for an additive model with multiple unlinked loci. An efficient algorithm to compute the inverse of the additive genetic covariance matrix is given. For an additive model, the variance for a crossbred individual is a function of the additive variances for the pure breeds, the covariance between parents, and segregation variances. Provided that the variance of a crossbred individual is computed as presented here, the covariance between crossbred relatives can be computed using formulae for purebred populations. For additive traits the inverse of the genotypic covariance matrix given here can be used both to obtain genetic evaluations by best linear unbiased prediction and to estimate genetic parameters by maximum likelihood in multibreed populations. For nonadditive traits, the procedure currently used to analyze multibreed data can be improved using the theory presented here to compute additive covariances together with a suitable approximation for nonadditive covariances.Supported in part by the Illinois Agricultural Experiment Station, Hatch Projects 35-0345 (RLF) and 35-0367 (MG)  相似文献   

11.
The role of epistasis in evolution and speciation has remained controversial. We use a new parameterization of physiological epistasis to examine the effects of epistasis on levels of additive genetic variance during a population bottleneck. We found that all forms of epistasis increase average additive genetic variance in finite populations derived from initial populations with intermediate allele frequencies. Average additive variance continues to increase over many generations, especially at larger population sizes (N = 32 to 64). Additive-by-additive epistasis is the most potent source of additive genetic variance in this situation, whereas dominance-by-dominance epistasis contributes smaller amounts of additive genetic variance. With additive-by-dominance epistasis, additive genetic variance decreases at a relatively high rate immediately after a population bottleneck, rebounding to higher levels after several generations. Empirical examples of epistasis for murine adult body weight based on measured genotypes are provided illustrating the varying effects of epistasis on additive genetic variance during population bottlenecks.  相似文献   

12.
A quantitative genetic model, that uses known family structure with clonal replicates to separate genetic variance into its additive, dominance and epistatic components, is available in the current literature. Making use of offspring testing, this model is based on the theory that components of variance from the linear model of an experimental design may be expressed in terms of expected covariances among relatives. However, if interactions between a pair of quantitative trait loci (QTLs) explain a large proportion of the total epistasis, it will seriously overestimate the additive and dominance variances but underestimate the epistatic variance. In the present paper, a new model is developed to manipulate this problem by combining parental and offspring material into the same test. Under the condition described above, the new model can provide an accurate estimate for additive x additive variances. Also, its accuracy in estimating dominance and total epistatic variances is much greater than the accuracy of the previous model. However, if there is obvious evidence showing the major contribution of high-order interactions, especially among 4QTLs, to the total epistasis, the previous model is more appropriate to partition the genetic variance for a quantitative trait. The re-analysis of an example from a factorial mating design in poplar shows large differences in estimating variance components between the new and previous models when two different assumptions (lowvs high-order epistatic interactions) are used. The new model will be an alternative to estimating the mode of quantitative inheritance for species, especially for longlived, predominantly outcrossing forest trees, that can be clonally replicated.  相似文献   

13.
Whitlock MC  Fowler K 《Genetics》1999,152(1):345-353
We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.  相似文献   

14.
Fecundity is usually considered as a trait closely connected to fitness and is expected to exhibit substantial nonadditive genetic variation and inbreeding depression. However, two independent experiments, using populations of different geographical origin, indicate that early fecundity in Drosophila melanogaster behaves as a typical additive trait of low heritability. The first experiment involved artificial selection in inbred and non-inbred lines, all of them started from a common base population previously maintained in the laboratory for about 35 generations. The realized heritability estimate was 0.151 +/- 0.075 and the inbreeding depression was very small and nonsignificant (0.09 +/- 0.09% of the non-inbred mean per 1% increase in inbreeding coefficient). With inbreeding, the observed decrease in the within-line additive genetic variance and the corresponding increase of the between-line variance were very close to their expected values for pure additive gene action. This result is at odds with previous studies showing inbreeding depression and, therefore, directional dominance for the same trait and species. All experiments, however, used laboratory populations, and it is possible that the original genetic architecture of the trait in nature was subsequently altered by the joint action of random drift and adaptation to captivity. Thus, we carried out a second experiment, involving inbreeding without artificial selection in a population recently collected from the wild. In this case we obtained, again, a maximum-likelihood heritability estimate of 0.210 +/- 0.027 and very little nonsignificant inbreeding depression (0.06 +/- 0.12%). The results suggest that, for fitness-component traits, low levels of additive genetic variance are not necessarily associated with large inbreeding depression or high levels of nonadditive genetic variance.  相似文献   

15.
Traditional models of genetic drift predict a linear decrease in additive genetic variance for populations passing through a bottleneck. This perceived lack of heritable variance limits the scope of founder-effect models of speciation. We produced 55 replicate bottleneck populations maintained at two male-female pairs through four generations of inbreeding (average F = 0.39). These populations were formed from an F2 intercross of the LG/J and SM/J inbred mouse strains. Two contemporaneous control strains maintained with more than 60 mating pairs per generation were formed from this same source population. The average level of within-strain additive genetic variance for adult body weight was compared between the control and experimental lines. Additive genetic variance for adult body weight within experimental bottleneck strains was significantly higher than expected under an additive genetic model This enhancement of additive genetic variance under inbreeding is likely to be due to epistasis, which retards or reverses the loss of additive genetic variance under inbreeding for adult body weight in this population. Therefore, founder-effect speciation processes may not be constrained by a loss of heritable variance due to population bottlenecks.  相似文献   

16.
It is important to detect population bottlenecks in threatened and managed species because bottlenecks can increase the risk of population extinction. Early detection is critical and can be facilitated by statistically powerful monitoring programs for detecting bottleneck-induced genetic change. We used Monte Carlo computer simulations to evaluate the power of the following tests for detecting genetic changes caused by a severe reduction in a population's effective size ( N e): a test for loss of heterozygosity, two tests for loss of alleles, two tests for change in the distribution of allele frequencies, and a test for small N e based on variance in allele frequencies (the 'variance test'). The variance test was most powerful; it provided an 85% probability of detecting a bottleneck of size N e = 10 when monitoring five microsatellite loci and sampling 30 individuals both before and one generation after the bottleneck. The variance test was almost 10-times more powerful than a commonly used test for loss of heterozygosity, and it allowed for detection of bottlenecks before 5% of a population's heterozygosity had been lost. The second most powerful tests were generally the tests for loss of alleles. However, these tests had reduced power for detecting genetic bottlenecks caused by skewed sex ratios. We provide guidelines for the number of loci and individuals needed to achieve high-power tests when monitoring via the variance test. We also illustrate how the variance test performs when monitoring loci that have widely different allele frequency distributions as observed in five wild populations of mountain sheep ( Ovis canadensis ).  相似文献   

17.
Willem Kruijer 《Genetics》2016,202(1):363-366
Additive genetic variance in natural populations is commonly estimated using mixed models, in which the covariance of the genetic effects is modeled by a genetic similarity matrix derived from a dense set of markers. An important but usually implicit assumption is that the presence of any nonadditive genetic effect increases only the residual variance and does not affect estimates of additive genetic variance. Here we show that this is true only for panels of unrelated individuals. In the case that there is genetic relatedness, the combination of population structure and epistatic interactions can lead to inflated estimates of additive genetic variance.  相似文献   

18.
Models of founder events have focused on the reduction in the genetic variation following a founder event. However, recent work (Bryant et al., 1986; Goodnight, 1987) suggests that when there is epistatic genetic variance in a population, the total genetic variance within demes may actually increase following a founder event. Since the additive genetic variance is a statistical property of a population and can change with the level of inbreeding, some of the epistatic genetic variance may be converted to additive genetic variance during a founder event. The model presented here demonstrates that some of the additive-by-additive epistatic genetic variance is converted to additive genetic variance following a founder event. Furthermore, the amount of epistasis converted to additive genetic variance is a function of the recombination rate and the propagule size. For a single founder event of two individuals, as much as 75% of the epistatic variance in the ancestral population may become additive genetic variance following the founder event. For founder events involving two individuals with free recombination, the relative contribution of epistasis to the additive genetic variance following a founder event is equal to its proportion of the total genetic variance prior to the founder event. Traits closely related to fitness are expected to have relatively little additive genetic variance but may have substantial nonadditive genetic variance. Founder events may be important in the evolution of fitness traits, not because they lead to a reduction in the genetic variance, but rather because they lead to an increase in the additive genetic variance.  相似文献   

19.
Under the inifinitesimal model of gene effects, selection reduces the additive genetic variance by inducing negative linkage disequilibrium among selected genes. If the selected genes are linked, the decay of linkage disequilibrium is delayed, and the reduction of additive genetic variance is enhanced. Inbreeding in an infinite population also alters the additive genetic variance through the generation of positive association among genes within a locus. In the present study, the joint effect of selection, linkage and partial inbreeding (partial selfing or partial full-sib mating) on the additive genetic variance was modeled. The recurrence relations of the additive genetic variance between successive generations and the prediction equation of the asymptotic additive genetic variance were derived. Numerical computation showed that although partially inbred populations initially maintain larger genetic variances, the accumulated effect of selection overrides the effect of inbreeding. Stochastic simulation was carried out to check the precision of prediction, showing that the obtained equations give a satisfactory prediction during initial generations. However, the predicted values always overestimate the simulated values, especially in later generations. Based on these results, possible extensions and perspectives of the assumed model were discussed.  相似文献   

20.
Zimmer D  Mayer M  Reinsch N 《Genetics》2011,187(1):261-270
Methodology for mapping quantitative trait loci (QTL) has focused primarily on treating the QTL as a fixed effect. These methods differ from the usual models of genetic variation that treat genetic effects as random. Computationally expensive methods that allow QTL to be treated as random have been explicitly developed for additive genetic and dominance effects. By extending these methods with a variance component method (VCM), multiple QTL can be mapped. We focused on an F(2) crossbred population derived from inbred lines and estimated effects for each individual and their corresponding marker-derived genetic covariances. We present extensions to pairwise epistatic effects, which are computationally intensive because a great many individual effects must be estimated. But by replacing individual genetic effects with average genetic effects for each marker class, genetic covariances are approximated. This substantially reduces the computational burden by reducing the dimensions of covariance matrices of genetic effects, resulting in a remarkable gain in the speed of estimating the variance components and evaluating the residual log-likelihood. Preliminary results from simulations indicate competitiveness of the reduced model with multiple-interval mapping, regression interval mapping, and VCM with individual genetic effects in its estimated QTL positions and experimental power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号