首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
We used solid-state NMR techniques to probe the interactions of cholesterol (Chol) with bovine brain sphingomyelin (SM) and for comparison of the interactions of Chol with dipalmitoylphosphatidylcholine (DPPC), which has a similar gel-to-liquid crystalline transition temperature. (1)H-, (31)P-, and (13)C-MASNMR yielded high-resolution spectra from multilamellar dispersions of unlabeled brain SM and Chol for analysis of chemical shifts and linewidths. In addition, (2)H-NMR spectra of oriented lipid membranes with specific deuterium labels gave information about membrane ordering and mobility. Chol disrupted the gel-phase of pure SM and increased acyl chain ordering in the liquid crystalline phase. As inferred from (13)C chemical shifts, the boundaries between the ordered and disordered liquid crystalline phases (L and L) were similar for SM and DPPC. The solubility limit of Chol in SM was ~50 mol %, the same value as previously reported for DPPC membranes. We found no evidence for specific H-bonding between Chol and the amide group of SM. The order parameters of a probe molecule, d31-sn1-DPPC, in SM were slightly higher than in DPPC for all carbons except the terminal groups at 30 mol % but were not significantly different at 5 and 60 mol % Chol. These studies show a general similarity with some subtle differences in the way Chol interacts with DPPC and SM. In the environment of a typical biomembrane, the higher proportion of saturated fatty acyl chains in SM compared to other phospholipids may be the most significant factor influencing interactions with Chol.  相似文献   

2.
A model membrane system composed of egg sphingomyelin (SM), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol was studied with static and magic angle spinning (31)P NMR spectroscopy. This model membrane system is of significant biological relevance since it is known to form lipid rafts. (31)P NMR under magic angle spinning conditions resolves the SM and DOPC headgroup resonances allowing for extraction of the (31)P NMR parameters for the individual lipid components. The isotropic chemical shift, chemical shift anisotropy, and asymmetry parameter can be extracted from the spinning side band manifold of the individual components that form liquid-ordered and liquid-disordered domains. The magnitude of the (31)P chemical shift anisotropy and the line width is used to determine headgroup mobility and monitor the gel-to-gel and gel-to-liquid crystalline phase transitions of SM as a function of temperature in these mixtures. Spin-spin relaxation measurements are in agreement with the line width results, reflecting mobility differences and some heterogeneities. It will be shown that the presence of DOPC and/or cholesterol greatly impacts the headgroup mobility of SM both above and below the liquid crystalline phase transition temperature, whereas DOPC displays only minor variations in these lipid mixtures.  相似文献   

3.
Summary High sensitivity, differential scanning calorimetry studies of vovine retinal rod outer segment (ROS) disk membranes and aqueous dispersions of the extracted ROS phospholipids have been performed. ROS disk membranes were found to exhibit a broad peak of excess heat capacity with a maximum at less than about 3°C, ascribable to a gel-to-liquid crystalline phase transition of traction of the phospholipids. A similar thermotropic transition was observed for aqueous dispersions of the total extracted and purified ROS phospholipids. Comparison of the results obtained for the dispersion of total ROS phospholipids to those of the purified head group fractions. suggests that the thermotropic behavior reffects a gel-to-liquid crystalline transition, leading to lateral phase separation, involving those phosphatidylcholine (PC) molecules containing saturated fatty acylchains, possibley together with the highest melting ROS phosphatidylethanolamine (PE) and phosphatidylserine (PS) components. The interpretation of the thermal behavior of the ROS disk membranes depends on whether the transition is assumed to derive from the ROS PC and/or PE/PS fractions, and whether the transbilayer arrangement of the ROS phospholipids is assumed to be symmetric or asymmetric. The calorimetric data can be simply explained in terms of an asymmetric distribution of the major ROS disk membrane phospholipids (G.P. Miljanich et al.,J. Membrane Biol. 60:249–255, 1981). In this case, the transition would arise from the PE/PS fractions in the outer ROS disk membrane monolyer, and the anticipated transition from the PC in the inner monolayer would be broadened due to interaction with cholesterol. For the ROS membranes at higher temperatures, two additional, irreversible transitions are observed at 57 and 72°C, corresponding to the thermal denauturation of opsin and rhodopsin, respectively.  相似文献   

4.
The structure and thermotropic phase behaviour of aqueous dispersions of egg phosphatidylcholine, egg sphingomyelin, bovine brain sphingomyelin and binary mixtures of phosphatidylcholine and sphingomyelins have been examined by synchrotron X-ray diffraction methods. Small-angle lamellar Bragg peaks and wide-angle X-ray scattering bands have been subjected to peak fitting procedures to identify coexisting gel and fluid as well as fluid-fluid bilayer structures. Molecular species of egg phosphatidylcholine exhibit fluid-fluid immiscibility throughout heating scans from 20 ° to 50 °C. Egg and brain sphingomyelins exhibit gel-fluid bilayer coexistence at temperatures below the main phase transition temperature and fluid-fluid phase coexistence at higher temperatures. Binary mixtures of equimolar proportions of egg phosphatidylcholine and either of the sphingomyelins show gel-fluid phase coexistence at temperatures below the gel phase transition temperature of the respective sphingomyelin. Binary mixtures containing egg sphingomyelin show fluid-fluid immiscibility at all temperatures of the heating scans whereas the fluid phase of mixtures comprising brain sphingomyelin are apparently miscible at all temperatures. An analysis of binary mixtures containing egg sphingomyelin and egg phosphatidylcholine in molar ratios 50:50, 67:33 and 83:17 at 50 °C to identify the composition of the lamellar phases indicated that the two phospholipids are immiscible in bilayers in the fluid phase. The results are discussed in terms of the role of intermolecular hydrogen bonds and hydrocarbon chain composition of sphingomyelins in maintaining coupling across fluid bilayers.  相似文献   

5.
6.
The effects of low concentrations of cholesterol in mixtures of a negatively charged phospholipid (phosphatidylserine or phosphatidylglycerol) and another phospholipid (phosphatidylcholine, sphingomyelin or phosphatidylethanolamine) have been studied by differential scanning calorimetry. Only mixtures which showed a gel phase miscibility gap have been employed. It was demonstrated that in mixtures with phosphatidylethanolamine, cholesterol was preferentially associated with the negatively charged phospholipid, regardless whether this species represented the component with the high or with the low transition temperature in the mixture. In mixtures of a negatively charged phospholipid and phosphatidylcholine, cholesterol associated with the negatively charged phospholipid; when the phosphatidylcholine was the species with the low transition temperature, cholesterol had an affinity for the phosphatidylcholine and for the negatively charged phospholipid as well. Cholesterol, in a mixture of sphingomyelin with a high and phosphatidylserine with a low transition temperature, was preferentially associated with sphingomyelin.From these experiments it is concluded that phospholipids show a decrease in affinity for cholesterol in the following order: sphingomyelin ? phosphatidylserine, phosphatidylglycerol > phosphatidylcholine ? phosphatidylethanolamine.  相似文献   

7.
The structure and thermotropic phase behaviour of a fully hydrated binary mixture of dipalmitoylphosphatidylcholine and a branched-chain phosphatidylcholine, 1, 2-di(4-dodecyl-palmitoyl)-sn-glycero-3-phosphocholine, were examined using differential scanning calorimetry, synchrotron X-ray diffraction and freeze-fracture electron microscopy. The branched-chain lipid forms a nonlamellar phase when dispersed alone in aqueous medium. Mixed aqueous dispersions of the two phospholipids containing less than 33 mol% of the branched-chain lipid form lamellar phases over the whole temperature range were studied (4 degrees C to 60 degrees C). When present in proportions greater than 33 mol% it induces a hexagonal phase in mixed aqueous dispersions with dipalmitoylphosphatidylcholine at temperatures above the fluid phase transition. At temperatures below 35 degrees C a hexagonal phase coexists with a gel bilayer phase. The lamellar<-->nonlamellar transition can be explained satisfactorily on the basis of the shape of the molecule expressed in terms of headgroup and chain cross-sectional areas. At temperatures below 35 degrees C macroscopic phase separation of two gel phases takes place. Freeze-fracture electron microscopy revealed that one gel phase consists of bilayers with a highly regular, periodic superstructure (macro-ripples) whereas the other phase forms flat, planar bilayers. The macro-ripple phase appears to represent a relaxation structure required to adapt to the packing constraints imposed by the incorporation of the branched-chain lipid into the dipalmitoylphosphatidylcholine host bilayer. The data suggest that structural changes that take place on cooling the mixed dispersion below the lamellar<-->nonlamellar phase transition temperature cannot be adequately described using the molecular form concept. Instead it is necessary to take into account the detailed molecular form of the guest lipid as well as its physical properties.  相似文献   

8.
A simulation method to interpret electron spin resonance (ESR) of spin labelled amphiphilic molecules in oriented phosphatidylcholine multibilayers in terms of a restricted motional model is presented. Order and motion of the cholestane spin label (3-spiro-doxyl-5α-cholestane) incorporated into egg yolk phosphatidylcholine, dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine, pure and in mixture with cholesterol, were studied at various termperatures. With egg yolk phosphatidylcholine identical sets of motional parameters were obtained from simulations of ESR spectra obtained at three microwave frequencies (X-, K- and Q-band). With dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine analyses of the spectra show that phase transitions occur in samples containing up to 30 mol % cholesterol. The activation energy for the motion of the spin label is about three times larger above than below the phase transition, indicating a more collective motion in the liquid crystalline state than in the gel state. In the liquid crystalline state the activation energy is larger in the pure phosphatidylcholines than with cholesterol added. Additions of cholesterol to egg phosphatidylcholine induces a higher molecular order but does not appreciably affect correlation times. This is in contrast to dipalmitoylphosphatidylcholine where both order and correlation times are affected by the presence of cholesterol. The activation energies follow the same order as the transition temperatures: dipalmitoylphosphatidylcholine > dimyristoylphosphatidylcholine > egg yolk phosphatidylcholine, suggesting a similar order of the cooperativity of the motion of the lipid molecules. Magnetic field-induced effects on egg phosphatidylcholine multibilayers.  相似文献   

9.
We have utilized phosphorus nuclear magnetic resonance, which provides an excellent means of characterizing the physical state of lipids, to investigate the polymorphic phase behavior of pure dielaidoylphosphatidylethanolamine (DEPE). We have observed a sharp isotropic component in the typical bilayer and inverted hexagonal P-31 NMR spectra. This component appears in the spectra of both the bilayer and inverted hexagonal lipid phases after several cycles through the bilayer-to-hexagonal phase transition. The magnitude of the isotropic component increased as a function of the number of cycles through the transition. The appearance of this component was not a function of time at constant temperature, but only a function of the number of cycles through the transition. The isotropic component is stable at all temperatures above the gel-to-liquid crystal transition, but it abruptly disappears when the lipid is cooled below the gel-to-liquid crystal phase transition. It is suggested that this isotropic phase is similar to the isotropic phase observed in dioleoylphosphatidylethanolamine (DOPE) by x-ray diffraction and identified as a cubic phase (Shyamsunder, E., S. M. Gruner, M. W. Tate, D. C. Turner, P. T. C. So, and C. P. S. Tilcock. 1988. Biochemistry. 27:2332-2336).  相似文献   

10.
The hydration characteristics of phosphatidylcholines and the effect of cholesterol on these were studied with differential thermal analysis and water vapour adsorption experiments. Also the water adsorption of egg phosphatidylethanolamine and the effect of cholesterol on this was studied and compared with corresponding qualities of phosphatidylcholine.The differential thermal analysis study showed that the monohydrates of egg, dipalmitoyl, and dioleoyl phosphatidylcholine tightly bind ~9 molecules of water per phosphatidylcholine molecule. Cholesterol is proved to somewhat increase the water binding of the phospholipids. Cholesterol is also shown to decrease the heat change of the chain melting transition of dioleoyl phosphatidylcholine, but not to abolish it completely.The water adsorption experiments indicate that the hydration of phosphatidylcholines takes place in two steps; a strong initial water binding and a second phase of weak binding. The adsorption isotherm of egg phosphatidylethanolamine is strikingly different from that of egg phosphatidylcholine. Cholesterol is shown, also by this method, to increase the hydration of phospholipids especially that of dipalmitoylphosphatidylcholine.The results in this study are in good agreement with those presented by many other authors. Starting with the accumulated information of the hydration characteristics of phosphatidylcholines the organization of the bound water around the polar group is discussed and the most probable model is evaluated.  相似文献   

11.
12.
R E Burrier  P Brecher 《Biochemistry》1984,23(22):5366-5371
Sonicated dispersions of egg yolk phosphatidylcholine and triolein as vesicles and microemulsions have been used as substrates for the assay of a purified acid lipase. Previous studies have also shown that triolein localized in the surface phase of emulsions is the preferred substrate. In this study, we examined enzyme activity following several surface modifications using both vesicles and microemulsions. When the acidic phospholipids phosphatidylserine and phosphatidic acid were incorporated into both vesicles and microemulsions at up to 10 mol % of the total phospholipid, a dose-dependent reduction in the apparent Km was observed. Using the vesicles as substrate, a dose-dependent decrease in Vmax was also observed. Agarose gel electrophoresis was used to verify suspected changes in net particle charge. Analogous inclusion of phosphatidylethanolamine, sphingomyelin, or cholesterol did not affect kinetic parameters. Addition of oleic acid to sonication mixtures produced vesicles with a decreased apparent Km and Vmax, but triolein hydrolysis in microemulsions was not significantly altered. Triolein-containing vesicles prepared by using dimyristoyl- or dipalmitoylphosphatidylcholine were hydrolyzed maximally at the gel liquid-crystalline transition temperatures of the appropriate phospholipid. Differential scanning calorimetry was used to verify the temperatures of transition in these vesicles. The results indicate that acid lipase activity is influenced by the charge or physical state of the surface phase of model substrates and suggest that degradation of core components of naturally occurring substrates such as lipoprotein may be influenced by chemical changes on the surface of these particles.  相似文献   

13.
S J Kohler  M P Klein 《Biochemistry》1977,16(3):519-526
31P nuclear magnetic resonance (NMR) powder spectra have been used to determine the principal values of the chemical shielding tensors of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidic acid. The shielding tensors in all cases were clearly nonaxial. The principal values for the monoester phosphatidic acid shielding tensor are -40, -4, and 48 ppm relative to 85% H3PO4. By contrast the diesters have values of -87, -25, and 119 ppm for phosphatidylcholine, -81, -20, and 105 ppm for phosphatidylethanolamine, and -80, -20, and 112 ppm for phosphatidylserine. This difference reflects the sensitivity of the 31P shielding tensor to chemical environment. Anisotropic motion of the molecules in lamellar dispersions of phospholipids caused an incomplete averaging of the shielding tensors resulting in partially narrowed spectra. Spectra of various phospholipid dispersions were recorded as a function of temperature and transitions observed at the gel-liquid crystalline phase transition temperatures. Using a reasonable set of initial conditions, it was shown that a simple model of molecular motion could successfully predict the observed spectra and their temperature dependences. The model includes rotations about the P-O(glycerol) bond and the molecular z axis and a wobble of the molecule about the bilayer normal. As the temperature increases, the wobble amplitude increases and the spectra narrow. A preliminary 31 P NMR spectrum of chick embryo fibroblasts is included. The similarities between this spectrum and those of the lamellar dispersions indicate that some of the predominant features are due to the phospholipid resonances.  相似文献   

14.
(1) The 129 MHZ and 36.4 MHZ 31 P NMR spectra of unsonicated liposomes consisting of phosphatidylcholines of varying chain length and unsaturation have been investigated. (2) In the liquid crystalline state the 31 P NMR liposome spectra are similar for both saturated and unsaturated phosphatidylcholines, demonstrating that the motion of the polar headgroup is not sensitive to the fatty acid composition in the disordered liquid crystalline state. (3) Below the hydrocarbon phase transition temperature there is a marked increase in the linewidth of the 31P NMR liposome spectra, indicating a reduction in the motion of the polar headgroup. (4) The addition of equimolar concentrations of cholesterol to phosphatidylcholine eliminates phase transition effects experienced by the polar headgroup. The motion of the polar headgroup is then very similar to that obtained in the liquid crystalline state for pure phosphatidylcholine bilayers. (5) In the liquid crystalline state the motion of the polar headgroup in the phosphate region is insensitive to changes in the available area per phosphatidy-choline molecule.  相似文献   

15.
The polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines was investigated by differential scanning calorimetry, 31P-nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Upon heating, aqueous dispersions of dried samples of the short- and medium-chain homologues (n < or = 17) exhibit single, highly energetic transitions from a dry, crystalline form to the fully hydrated, liquid-crystalline bilayer at temperatures higher than the lamellar gel-liquid-crystalline phase transition exhibited by fully hydrated samples. In contrast, the longer chain homologues (n > or = 18) first exhibit a transition from a dehydrated solid form to the hydrated L beta gel phase followed by the gel-liquid-crystalline phase transition normally observed with fully hydrated samples. The fully hydrated, aqueous dispersions of these lipids all exhibit reversible, fairly energetic gel-liquid-crystalline transitions at temperatures that are significantly higher than those of the corresponding phosphatidylcholines. In addition, at still higher temperatures, the longer chain members of this series (n > or = 16) exhibit weakly energetic transitions from the lamellar phase to an inverted nonlamellar phase. Upon appropriate incubation at low temperatures, aqueous dispersions of the shorter chain members of this homologous series (n < or = 16) form a highly ordered crystal-like phase that, upon heating, converts directly to the liquid-crystalline phase at the same temperature as do the aqueous dispersions of the dried lipid. The spectroscopic data indicate that unlike the n-saturated diacyl phosphatidylcholines, the stable crystal-like phases of this series of phosphatidylethanolamines describe an isostructural series in which the hydrocarbon chains are packed in an orthorhombic subcell and the headgroup and polar/apolar interfacial regions of the bilayer are effectively immobilized and substantially dehydrated. Our results suggest that many of the differences between the properties of these phosphatidylethanolamine bilayers and their phosphatidylcholine counterparts can be rationalized on the basis of stronger intermolecular interactions in the headgroup and interfacial regions of the phosphatidylethanolamine bilayers. These are probably the result of differences in the hydration and hydrogen bonding interactions involving the phosphorylethanolamine headgroup and moieties in the polar/apolar interfacial regions of phosphatidylethanolamine bilayers.  相似文献   

16.
PDC-109 is the main component of bovine seminal plasma and has been suggested to play an important role in the genesis of bovine sperm cells. Here, the effect of binding of PDC-109 to membranes on the structure and physical properties of the lipid phase was investigated. For that, ESR measurements were undertaken on model membranes (lipid vesicles) and on biological membranes (epididymal spermatozoa) by employing various spin-labeled phospholipids. We found that PDC-109 alters the membrane structure of lipid vesicles as well as of bovine epididymal spermatozoa in that the mobility of spin-labeled phospholipids was reduced in the presence of the protein. This immobilizing effect of the protein was not restricted to analogues of phosphatidylcholine but was also detected with spin-labeled phosphatidylethanolamine. However, the extent of immobilization was lower for phosphatidylethanolamine compared with phosphatidylcholine, supporting the lipid headgroup specificity of the protein. Besides phospholipid headgroups, the physical state of membrane lipids is also important for the interaction of PDC-109 with membranes, in that, e.g., the immobilizing effect of the protein on labeled lipids was larger in membranes above the phase transition temperature compared with the effect below this temperature. The results are of relevance for understanding the physiological role of PDC-109 in the genesis of sperm cells.  相似文献   

17.
A simulation method to interpret electron spin resonance (ESR) of spin labelled amphiphilic molecules in oriented phosphatidylcholine multibilayers in terms of a restricted motional model is presented. Order and motion of the cholestane spin label (3-spiro-doxyl-5alpha-cholestane) incorporated into egg yolk phosphatidylcholine, dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine, pure and in mixture with cholesterol, were studied at various temperatures. With egg yolk phosphatidylcholine identical sets of motional parameters were obtained from simulations of ESR spectra obtained at three microwave frequencies (X-, K- and Q-band). With dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine analyses of the spectra show that phase transitions occur in samples containing up to 30 mol % cholesterol. The activation energy for the motion of the spin label is about three times larger above than below the phase transition, indicating a more collective motion in the lipid crystalline state than in the gel state. In the liquid crystalline state the activation energy is larger in the pure phosphatidylcholines than with cholesterol added. Additions of cholesterol to egg phosphatidylcholine induces a higher molecular order but does not appreciably affect correlation times. This is in contrast to dipalmitoylphosphatidylcholine where both order and correlation times are affected by the presence of cholesterol. The activation energies follow the same order as the transition temperatures: dipalmitoylphosphatidylcholine greater than dimyristoylphosphatidylcholine greater than egg yokd phosphatidylcholine, suggesting a similar order of the cooperativity of the motion of the lipid molecules. Magnetic field-induced effects on egg phosphatidylcholine multibilayers were found at Q-band measurements above 40 degrees C. The cholestane spin label mimics order and motion of cholesterol molecule incorporated into the lipid bilayers. This reflects order and motion of the portions of the lipid molecules on the same depth of the bilayer as the rigid steroid portions of the intercalated molecules.  相似文献   

18.
An aqueous dispersion of fully hydrated bovine sphingomyelin was studied using 14N-NMR spectroscopy. Spectra were obtained as a function of temperature over the range 15–80°C, in both the liquid crystal and gel phases. In the liquid crystal phase, powder pattern lineshapes were obtained, whose quadrupolar splitting slowly decreases with increasing temperature. The spectra are increasingly broadened as the temperature is lowered through the phase transition into the gel phase. The linewidths and the second moments of these spectra indicate that the onset of a broad phase transition occurs at approx. 35°C, in agreement with previous calorimetric and 31P-NMR measurements. There is no evidence from the lineshapes for an hexagonal phase in this system, and this conclusion is supported by X-ray diffraction measurements carried out on aqueous dispersions of sphingomyelin in both phases. Assuming that the static nitrogen quadrupole coupling constant is the same for both sphingomyelin and dipalmitoyl-l-α-phosphatidylcholine (DPPC), the decrease observed in the quadrupolar splitting of sphingomyelin compared to that of DPPC indicates that the orientational order of the choline headgroup in liquid crystalline sphingomyelin is not the same as that of its counterpart in DPPC. Preliminary relaxation time measurements of T1 and T2 are presented which suggest that there are also dynamic differences between sphingomyelin and DPPC in the choline headgroup.  相似文献   

19.
The structure, thermotropic phase behavior, dynamic motion and order parameters of bilayer dispersions of egg phosphatidylcholine, egg sphingomyelin, egg ceramide and cholesterol have been determined. The coexistence of gel, liquid-ordered and liquid-disordered structure has been determined by peak fitting analysis of synchrotron X-ray powder patterns. Order parameters and extent of distribution of 16-doxyl-stearic acid spin probe between ordered and disordered environments has been estimated by ESR spectral simulation methods. The presence of ceramide in proportions up to 20 mol% in phosphatidylcholine is characterized by gel-fluid phase coexistence at temperatures up to 46 degrees C depending on the amount of ceramide. Cholesterol tends to destabilize the ceramide-rich domains formed in phosphatidylcholine while sphingomyelin, by formation of stable complexes with ceramide, tends to stabilize these domains. The stability of sphingomyelin-ceramide complexes is evident from the persistence of highly ordered structure probed by ESR spectroscopy and appearance of a sharp wide-angle X-ray reflection at temperatures higher than the gel-fluid transition of ceramide alone in egg phosphatidylcholine bilayers. The competition between ceramide and cholesterol for interaction with sphingomyelin is discussed in terms of control of lipid-mediated signaling pathways by sphingomyelinase and phospholipase A2.  相似文献   

20.
Electrophoretic light scattering (ELS) and depolarization of fluorescence have been used to determine the effect of membrane fluidity on the binding of Ca2+ to liposomes. ELS was used to measure the electrophoretic mobilities of the liposomes. Fluorescence depolarization was used to determine membrane fluidity. Zero to 30 mol% phosphatidylserine (PS) was incorporated into liposomes containing, as bulk phospholipids, one of the following: dimyristoyl-phosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), egg phosphatidylcholine (PC), or hydrogenated egg phosphatidylcholine (H egg PC). The binding of Ca2+ to the liposomes appears to be influenced by membrane fluidity. Liposomes containing bulk phospholipids whose phase transition temperature is higher than the experimental temperature exhibit enhanced binding of CA2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号