首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
In human disease induced by Salmonella enterica serovar Typhimurium (S. Typhimurium), transepithelial migration of neutrophils rapidly follows attachment of the bacteria to the epithelial apical membrane. We have previously shown that during S. Typhimurium infection the multidrug resistance-associated protein 2 (MRP2) is highly expressed at the apical surface of the intestinal epithelia, and that it functions as an efflux pump for the potent neutrophil chemoattractant hepoxilin A(3) . However, the molecular mechanisms regulating its apical localization during active states of inflammation remain unknown. Thus, our objective was to determine the mechanistic basis for the translocation of MRP2 to the apical surface of intestinal epithelial cells during S. Typhimurium infection. We show that suppression of ezrin, through either RNAi or truncation of the C-terminus, results not only in a decrease in S. Typhimurium-induced neutrophil transmigration but also significantly attenuates the apical membrane expression of MRP2 during Salmonella infection. In addition, we determined that S. Typhimurium induces the activation of ezrin via a PKC-α-dependent pathway and that ezrin activation is coupled to apical localization of MRP2. Based on these results we propose that activation of ezrin is required for the apical localization of MRP2 during S. Typhimurium infection.  相似文献   

2.
3.
MisL is an autotransporter protein encoded by Salmonella pathogenicity island 3 (SPI3). To investigate the role of MisL in Salmonella enterica serotype Typhimurium (S. Typhimurium) pathogenesis, we characterized its function during infection of mice and identified a host receptor for this adhesin. In a mouse model of S. Typhimurium intestinal persistence, a misL mutant was shed with the faeces in significantly lower numbers than the wild type and was impaired in its ability to colonize the cecum. Previous studies have implicated binding of extracellular matrix proteins as a possible mechanism for S. Typhimurium intestinal persistence. A gluthathione-S-transferase (GST) fusion protein to the MisL passenger domain (GST-MisL(29-281)) was constructed to investigate binding to extracellular matrix proteins. In a solid-phase binding assay the purified GST-MisL(29-281) fusion protein bound to fibronectin and collagen IV, but not to collagen I. MisL expression was not detected by Western blot in S. Typhimurium grown under standard laboratory conditions. However, when expression of the cloned misL gene was driven by the Escherichia coli arabinose promoter, MisL could be detected in the S. Typhimurium outer membrane by Western blot and on the bacterial cell surface by flow cytometry. Expression of MisL enabled S. Typhimurium to bind fibronectin to its cell surface, resulting in attachment to fibronectin-coated glass slides and in increased invasiveness for human epithelial cells derived from colonic carcinoma (T84 cells). These data identify MisL as an extracellular matrix adhesin involved in intestinal colonization.  相似文献   

4.
Salmonella Typhimurium infections in pigs pose an important human health hazard. One promising control measure is the development of live attenuated vaccine strains using defined knockout mutants. Preferably, screening of candidate knockout vaccine strains for attenuation should first be done in models allowing testing of a large number of strains. Thereafter, a limited number of selected strains should be further characterized in an experimental infection model in pigs. The aim of the present study was to develop such models. The invasive and proliferative characteristics of S. Typhimurium were assessed in both a non-polarized and a polarized porcine intestinal epithelial cell line. Neutrophils obtained from porcine blood were used to study the capacity of Salmonella to withstand killing by these phagocytes. The ability to induce an intestinal inflammatory response was investigated in a terminal intestinal loop model. The systemic phase of infection was mimicked by studying the uptake and intracellular survival of S. Typhimurium in porcine pulmonary alveolar macrophages and peripheral blood monocytes. These models should allow screening for attenuated strains. For further characterization, an experimental infection model was established, providing extensive data on the course of an oral infection and the optimal time points for colonization (day 5 postinoculation [pi]) and persistency (days 21-28 pi) in pigs. In conclusion, screening for virulence of S. Typhimurium strains with subsequent confirmation for a subset of strains in a well-defined experimental infection model would significantly reduce the number of experimental pigs required.  相似文献   

5.
In 2013, Dr. Lora Hooper and colleagues described the induction of antibacterial macroautophagy/autophagy in intestinal epithelial cells as a cytoprotective host defense mechanism against invading Salmonella enterica serovar Typhimurium (S. Typhimurium). Canonical autophagy functions in a primarily degradative capacity to safeguard cells and ensure survival during stress conditions, including pathogen infection. In contrast, secretory autophagy has emerged as an alternative nondegradative mechanism for cellular trafficking and unconventional protein secretion. More recently, a study by Bel et al. from Dr. Hooper's lab describes how intestinal Paneth cells exploit the endoplasmic reticulum (ER) stress response to release antibacterial lysozyme through secretory autophagy in response to S. Typhimurium infection.  相似文献   

6.
Host resistance against Salmonella enterica serovar Typhimurium ( S . Typhimurium) is mediated by natural resistance-associated macrophage protein 1 (Nramp1/Slc11a1). Nramp1 is critical to host defence, as mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S . Typhimurium. Despite this crucial role, the mechanisms underlying Nramp1's protective effects are unclear. Dendritic cells (DCs) that sample the intestinal lumen are among the first cells encountered by S. Typhimurium following oral infection and act as a conduit for S. Typhimurium to cross the intestinal epithelial barrier. We report that DCs, including intestinal, splenic and bone marrow-derived DCs (BMDCs), express Nramp1 protein. In the small intestine, Nramp1 expression is greater in a subset of DCs (CD11c+CD103-) characterized by the elevated expression of pro-inflammatory cytokines in response to bacterial products. While Nramp1 expression did not affect S. Typhimurium replication in BMDCs, infected Nramp1+/+ BMDCs and intestinal CD11c+CD103- DCs secreted more inflammatory cytokines (IL-6, IL-12 and TNF-α) than Nramp1−/−, suggesting that Nramp1 expression may promote a more rapid inflammatory response following infection. Collectively, these findings reveal a new role for DCs and Nramp1 in modulating the host inflammatory response to S. Typhimurium.  相似文献   

7.
Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP) kinase and NF-κB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.  相似文献   

8.
Salmonella enterica subspecies I serotypes are responsible for the vast majority of salmonellosis in mammals and birds, yet only a few factors specific to this group that allow them to persist in this niche have been identified. We show that STM0557, a S. enterica subspecies I-specific gene encoding an inner membrane protein, is critical for faecal shedding and intestinal persistence of S. enterica serotype Typhimurium ATCC14028 in Salmonella-resistant mice, but mutations in this gene do not diminish short-term intestinal colonization or invasion of cultured epithelial cells. STM0557 and two neighbouring genes, located on a pathogenicity island termed SPI-16, resemble genes of the gtrA,B, gtr(type) cluster in seroconverting bacteriophages. In general, the gtr genes encode proteins responsible for serotype conversion of the infected bacterium by addition glucose residues to repeating O-antigen subunits of lipopolysaccharide (LPS). In lysogenized Shigella, such modifications have been previously shown to be constitutively expressed and to facilitate invasion of host cells. We show that serotype Typhimurium gtr orthologues, STM0557-0559, are responsible for 'form variation' or glucosylation of the O12 antigen galactose (4 position) to generate the 12-2 variant. Form variation in Typhimurium is not constitutive, but occurred upon exposure and during intracellular growth of serotype Typhimurium in J774 macrophages. Our data suggest that the 12-2 antigen is a S. enterica subspecies I-specific LPS modification that enhances long-term intestinal colonization, and is in contrast to the role of O-antigen variation described for Shigella.  相似文献   

9.
Salmonella enterica serovar Typhimurium is a major cause of human gastroenteritis. Infection of epithelial monolayers by S. Typhimurium disrupts tight junctions that normally maintain the intestinal barrier and regulate cell polarity. Tight junction disruption is dependent upon the Salmonella pathogenicity island-1 (SPI-1) type 3 secretion system but the specific effectors involved have not been identified. In this study we demonstrate that SopB, SopE, SopE2 and SipA are the SPI-1-secreted effectors responsible for disruption of tight junction structure and function. Tight junction disruption by S. Typhimurium was prevented by inhibiting host protein geranylgeranylation but was not dependent on host protein synthesis or secretion of host-derived products. Unlike wild-type S. Typhimurium, DeltasopB, DeltasopE/E2, DeltasipA, or DeltasipA/sopB mutants, DeltasopB/E/E2 and DeltasipA/sopE/E2 mutants were unable to increase the permeability of polarized epithelial monolayers, did not disrupt the distribution or levels of ZO-1 and occludin, and did not alter cell polarity. These data suggest that SPI-1-secreted effectors utilize their ability to stimulate Rho family GTPases to disrupt tight junction structure and function.  相似文献   

10.
The establishment of tight junctions (TJ) between columnar epithelial cells defines the functional barrier, which enteroinvasive pathogens have to overcome. Salmonella enterica serovar Typhimurium (S. typhimurium) directly invades intestinal epithelial cells but it is not well understood how the pathogen is able to overcome the intestinal barrier and gains access to the circulation. Therefore, we sought to determine whether infection with S. typhimurium could regulate the molecular composition of the TJ and, if so, whether these modifications would influence bacterial translocation and polymorphonuclear leukocyte (PMN) movement across model intestinal epithelium. We found that infection of a model intestinal epithelium with S. typhimurium over 2 h resulted in an approximately 80% loss of transepithelial electrical resistance. Western blot analysis of epithelial cell lysates demonstrated that S. typhimurium regulated the distribution of the TJ complex proteins claudin-1, zonula occludens (ZO)-2, and E-cadherin in Triton X-100-soluble and insoluble fractions. In addition, S. typhimurium was specifically able to dephosphorylate occludin and degrade ZO-1. This TJ alteration in the epithelial monolayer resulted in 10-fold increase in bacterial translocation and a 75% increase in N-formylmethionin-leucyl-phenyalanine-induced PMN transepithelial migration. Our data demonstrate that infection with S. typhimurium is associated with the rapid targeting of the tight junctional complex and loss of barrier function. This results in enhanced bacterial translocation and initiation of PMN migration across the intestinal barrier. Therefore, the ability to regulate the molecular composition of TJs facilitates the pathogenicity of S. typhimurium by aiding its uptake and distribution within the host.  相似文献   

11.
Inhibition of bacterial adhesion to intestinal epithelial receptors by the consumption of natural food components is an attractive strategy for the prevention of microbial related gastrointestinal illness. We hypothesised that Muc1, a highly glycosylated mucin present in cows’ milk, may be one such food component. Purified bovine Muc1 was tested for its ability to inhibit binding of common enteric bacterial pathogens to Caco-2 cells grown in vitro. Muc1 caused dose-dependent binding inhibition of Escherichia coli, Salmonella enterica serovar Typhimurium (S. Typhimurium), Staphylococcus aureus and Bacillus subtilis. This inhibition was more pronounced for the Gram negative compared with Gram positive bacteria. It was also demonstrated that Muc1, immobilised on a membrane, bound all these bacterial species in a dose-dependent manner, although there was greater interaction with the Gram negative bacteria. A range of monosaccharides, representative of the Muc1 oligosaccharide composition, were tested for their ability to prevent binding of E. coli and S. Typhimurium to Caco-2 cells. Inhibition was structure dependent with sialic acid, L(-) fucose and D(+) mannose significantly inhibiting binding of both Gram negative species. N-acetylglucosamine and N-acetylgalactosamine significantly inhibited binding of E. coli whilst galactose, one of the most abundant Muc1 monosaccharides, showed the strongest inhibition against S. Typhimurium. Treatment with sialidase significantly decreased the inhibitory properties of Muc1, demonstrating the importance of sialic acid in adhesion inhibition. It is concluded that bovine Muc1 prevents binding of bacteria to human intestinal cells and may have a role in preventing the binding of common enteropathogenic bacteria to human intestinal epithelial surfaces.  相似文献   

12.
Salmonella enterica serovar Typhi and Typhimurium are closely related serovars. However, S. Typhi, a human-specific pathogen, has 5% of genes as pseudogenes, far more than S. Typhimurium, which only has 1%. One of these pseudogenes corresponds to sopD2, which in S. Typhimurium encodes an effector protein involved in Salmonella-containing vacuole biogenesis in human epithelial cell lines, which is needed for full virulence of the pathogen. We investigated whether S. Typhi trans-complemented with the functional sopD2 gene from S. Typhimurium (sopD2(STM) ) would reduce the invasion of human epithelial cell lines. Our results showed that the presence of sopD2(STM) in S. Typhi significantly modified the bacterial ability to alter cellular permeability and decrease the CFUs recovered after cell invasion of human epithelial cell line. These results add to mounting evidence that pseudogenes contribute to S. Typhi adaptation to humans.  相似文献   

13.
Salmonella enterica serovar Typhimurium is a clinically important gram-negative, enteric bacterial pathogen that activates several Toll-like receptors (TLRs). While TLR signaling through the adaptor protein MyD88 has been shown to promote inflammation and host defense against the systemic spread of S. Typhimurium, curiously, its role in the host response against S. Typhimurium within the mammalian gastrointestinal (GI) tract is less clear. We therefore used the recently described Salmonella-induced enterocolitis and fibrosis model: wild-type (WT) and MyD88-deficient (MyD88(-/-)) mice pretreated with streptomycin and then orally infected with the ΔaroA vaccine strain of S. Typhimurium. Tissues were analyzed for bacterial colonization, inflammation, and epithelial damage, while fibrosis was assessed by collagen quantification and Masson's trichrome staining. WT and MyD88(-/-) mice carried similar intestinal pathogen burdens to postinfection day 21. Infection of WT mice led to acute mucosal and submucosal inflammation and edema, as well as significant intestinal epithelial damage and proliferation, leading to widespread goblet cell depletion. Impressive collagen deposition in the WT intestine was also evident in the submucosa at postinfection days 7 and 21, with fibrotic regions rich in fibroblasts and collagen. While infected MyD88(-/-) mice showed levels of submucosal inflammation and edema similar to WT mice, they were impaired in the development of mucosal inflammation, along with infection-induced epithelial damage, proliferation, and goblet cell depletion. MyD88(-/-) mouse tissues also had fewer submucosal fibroblasts and 60% less collagen. We noted that cyclooxygenase (Cox)-2 expression was MyD88-dependent, with numerous Cox-2-positive cells identified in fibrotic regions of WT mice at postinfection day 7, but not in MyD88(-/-) mice. Treatment of WT mice with the Cox-2 inhibitor rofecoxib (20 mg/kg) significantly reduced fibroblast numbers and collagen levels without altering colitis severity. In conclusion, MyD88 and Cox-2 signaling play roles in intestinal fibrosis during Salmonella-induced enterocolitis.  相似文献   

14.
The std operon encodes a fimbrial adhesin of Salmonella enterica serotype Typhimurium that is required for attachment to intestinal epithelial cells and for cecal colonization in the mouse. To study the mechanism by which this virulence factor contributes to colonization we characterized its binding specificity. Std-mediated binding to human colonic epithelial (Caco-2) cells could be abrogated by removing N-linked glycans. Adherence of Std fimbriated S.  Typhimurium to Caco-2 cells could be blocked by co-incubation with H type 2 oligosaccharide (Fucα1-2Galβ1-4GlcNAc) or by pretreatment of cells with α1-2 fucosidase. In contrast, pretreatment of Caco-2 cells with neuraminidase or co-incubation with the type 2 disaccharide precursor (Galβ1-4GlcNAc) did not reduce adherence of Std fimbriated S.  Typhimurium. Binding of purified Std fimbriae to Fucα1-2Galβ1-4GlcNAc in a solid phase binding assay was competitively inhibited by Ulex europaeus agglutinin-I (UEA-I), a lectin specific for Fucα1-2 moieties. Purified Std fimbriae and UEA both bound to a receptor localized in the mucus layer of the murine cecum. These data suggest that the std operon encodes an adhesin that binds an α1-2 fucosylated receptor(s) present in the cecal mucosa.  相似文献   

15.
Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S.) Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella.  相似文献   

16.
To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion.  相似文献   

17.
Salmonella Pathogenicity Island 1 (SPI-1) genes are indispensable for virulence of Salmonella Typhimurium in several animal species. The role of SPI-1 in the pathogenesis of Salmonella Typhimurium infections of pigs, however, is not well described. The interactions of a porcine Salmonella Typhimurium field strain and its isogenic mutants with disruptions in the SPI-1 genes hilA, sipA and sipB with porcine intestinal epithelial cells were characterized in vitro and in a ligated intestinal loop model in pigs. HilA and SipB were essential in the invasion of porcine intestinal epithelial cells in vitro. A sipA mutant was impaired for invasion using a polarized cell line, but fully invasive in a non-polarized cell line. All SPI-1 mutants induced a significant decrease in influx of neutrophils in the porcine intestinal loop model compared with the wild type strain. Pigs were orally inoculated with 10(8) colony forming units of both the wild type Salmonella Typhimurium strain and its isogenic sipB::kan mutant strain. The sipB mutant strain was significantly impaired to invade the intestinal, but not the tonsillar tissue, one day after inoculation and was unable to efficiently colonize the intestines and the GALT, but not the tonsils, 3 days after inoculation. This study shows that SPI-1 plays a crucial role in the invasion and colonization of the porcine gut and in the induction of influx of neutrophils towards the intestinal lumen, but not in the colonization of the tonsils.  相似文献   

18.
The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium was investigated. We used a three-dimensional (3-D) organotypic model of human colonic epithelium that was previously validated and applied to study interactions between S. Typhimurium and the intestinal epithelium that lead to enteric salmonellosis. Using this model system, we show that L. reuteri protects the intestinal cells against the early stages of Salmonella infection and that this effect is significantly increased when L. reuteri is stimulated to produce reuterin from glycerol. More specifically, the reuterin-containing ferment of L. reuteri caused a reduction in Salmonella adherence and invasion (1 log unit), and intracellular survival (2 log units). In contrast, the L. reuteri ferment without reuterin stimulated growth of the intracellular Salmonella population with 1 log unit. The short-term exposure to reuterin or the reuterin-containing ferment had no observed negative impact on intestinal epithelial cell health. However, long-term exposure (24 h) induced a complete loss of cell-cell contact within the epithelial aggregates and compromised cell viability. Collectively, these results shed light on a potential role for reuterin in inhibiting Salmonella-induced intestinal infections and may support the combined application of glycerol and L. reuteri. While future in vitro and in vivo studies of reuterin on intestinal health should fine-tune our understanding of the mechanistic effects, in particular in the presence of a complex gut microbiota, this the first report of a reuterin effect on the enteric infection process in any mammalian cell type.  相似文献   

19.
目的:建立鼠伤寒沙门氏菌诱导昆明小鼠肠道感染模型。方法:先用5 mg/mL链霉素预处理2 d,提高小鼠对鼠伤寒沙门氏菌的敏感性,然后正常饲养1 d,攻毒前禁水禁食4 h,再分别以不同剂量灌胃攻毒2次,间隔24 h。观察小鼠临床症状,并通过组织病理切片、透射电镜和免疫组织化学的方法,分别观察小鼠肠道组织病理变化、小肠上皮细胞超微结构变化及肠道淋巴细胞增殖状况。结果:攻毒后昆明小鼠会出现昏睡、食欲不振、寒颤,甚至死亡的现象,解剖后发现小鼠肠道充血膨胀。组织病理切片显示小鼠肠粘膜受损,小肠绒毛肿胀,排列杂乱,炎性细胞浸润;透射电镜观察超微结构显示小肠上皮细胞线粒体空泡化,嵴和膜发生融合消失,粗面内质网发生扩张;免疫组织化学的方法显示肠道感染后,淋巴结肿大,T淋巴细胞大量增殖。结论:该模型对探索鼠伤寒沙门氏菌引发肠炎的发病机制、病理生理、免疫等方面作用具有重要意义,并为特异性卵黄抗体被动免疫保护效果的后续评价奠定基础。  相似文献   

20.
Neutrophil (polymorphonuclear leucocytes; PMN) transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Using Salmonella enterica serovar Typhimurium (S. Typhimurium) as a prototypic proinflammatory insult, we have previously reported that the eicosanoid hepoxilin A3 (HXA3), an endogenous product of 12‐lipoxygenase (12‐LOX) activity, is secreted from the apical surface of the intestinal epithelium to establish a chemotactic gradient that guides PMN across the epithelial surface. Since little is known regarding the molecular mechanisms that regulate 12‐LOX during S. Typhimurium infection, we investigated this pathway. We found that expression of phospholipid glutathione peroxidase (GPX4), which is known to have an inhibitory effect on 12‐LOX activity, is significantly decreased at both the mRNA and protein level during infection with S. Typhimurium. Moreover, employing intestinal epithelial cell monolayers expressing siRNA against GPX4 mRNA, S. Typhimurium‐induced PMN migration was significantly increased compared with the non‐specific siRNA control cells. Conversely, in cells engineered to overexpress GPX4, S. Typhimurium‐induced PMN migration was significantly decreased, which is consistent with the finding that partial depletion of GPX4 by RNAi resulted in a significant increase in HXA3 secretion during S. Typhimurium infection. Mechanistically, although we found Salmonella entry not to be required for the induced decrease in GPX4, the secreted effector, SipA, which is known to induce epithelial responses leading to stimulation of HXA3, governed the decrease in GPX4 in a process that does not lead to an overall increase in the levels of ROS. Taken together, these results suggest that S. Typhimurium induces apical secretion of HXA3 by decreasing the expression of phospholipid GPX, which in turn leads to an increase in 12‐LOX activity, and hence HXA3 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号