首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postmortem brain tissue has been reported to be suitable to delineate regional pattern of possible disturbances underlying epigenetic functionality. However, from many parameters that have been detected in postmortem brain regions it is noteworthy that an effect of postmortem interval (PMI), storage time and premortem parameters should not be underestimated. Our previous investigation revealed that tryptophan (TRP) levels in postmortem brain tissue is affected by PMI and storage time. Since, alteration in TRP levels are assumed to be due to protein degradation, we further investigated whether TRP correlates to variables such as RNA, proteins and DNA modulators. In addition, we aimed to elucidate whether established postmortem variables may influence epigenetic parameters. These were investigated in well characterized postmortem human brain tissue originating from the European Brain Bank consortium II (BNEII). We could confirm previous findings, in which some protein levels alter because of prolonged PMI. Similarly, we demonstrated an influence of increased storage period on TRP levels, which might indicate degradation of proteins. Still not all proteins degrade in a similar manner, therefore a specific analysis for the protein of interest would be recommended. We found that methyltransferase- and acetyltransferase-activities were relatively preserved with PMI and storage duration. In conclusion, preservation of acetyltransferase- and methyltransferase-activities provides possible evidence of stability for epigenetic studies using postmortem tissue.  相似文献   

2.
Oka T  Tagawa K  Ito H  Okazawa H 《PloS one》2011,6(6):e21405
Protein phosphorylation is deeply involved in the pathological mechanism of various neurodegenerative disorders. However, in human pathological samples, phosphorylation can be modified during preservation by postmortem factors such as time and temperature. Postmortem changes may also differ among proteins. Unfortunately, there is no comprehensive database that could support the analysis of protein phosphorylation in human brain samples from the standpoint of postmortem changes. As a first step toward addressing the issue, we performed phosphoproteome analysis with brain tissue dissected from mouse bodies preserved under different conditions. Quantitative whole proteome mass analysis showed surprisingly diverse postmortem changes in phosphoproteins that were dependent on temperature, time and protein species. Twelve hrs postmortem was a critical time point for preservation at room temperature. At 4°C, after the body was cooled down, most phosphoproteins were stable for 72 hrs. At either temperature, increase greater than 2-fold was exceptional during this interval. We found several standard proteins by which we can calculate the postmortem time at room temperature. The information obtained in this study will be indispensable for evaluating experimental data with human as well as mouse brain samples.  相似文献   

3.
Abstract: The effects of postmortem delay, time of storage, and freezing, thawing, and refreezing tissue samples were studied in postmortem rat brain using conditions that reflect the handling of postmortem human brain before neurochemical analysis. The levels of monoamines and metabolites in the striatum and cingulate and occipital cortex were measured using alumina extraction and HPLC methods. Binding of raclopride to dopamine D2, SCH- 23390 to dopamine D1, ketanserin to serotonin 5-HT2, 8- hydroxy-2-(di- n -propylamino)tetralin to serotonin 5-HT1A, and cholecystokinin (CCK)-8 to CCK-B sites was measured in tissue homogenates from the striatum or frontoparietal cortex. An 18-h postmortem delay before dissection and storage resulted in region-specific changes in monoamine and metabolite levels. Binding to striatal D1and frontoparietal cortex CCK-B sites was reduced over the course of a 27-h postmortem delay. Binding to D2 and 5-HT sites was relatively stable. Storage of tissue for up to 8 months also resulted in region-specific changes in monoamine and metabolite levels. No changes in receptor binding were seen after long-term storage. Freezing, thawing, and refreezing tissue samples resulted in increased levels of striatal 3, 4-dihydroxyphenylacetic acid and decreased binding to striatal D2 sites. These results demonstrate time-, temperature-, and storage-dependent regional differences in.the stability of monoamines and their metabolites and in binding to various receptor sites. These differences in stability and binding should be accounted for to interpret accurately the effects of neurological disorders on neurotransmitter dynamics in postmortem human brain tissue.  相似文献   

4.
Abstract: The proteins of membrane and cytosol fractions from frozen human postmortem brain were analyzed by two-dimensional gel electrophoresis (isoelectric range: 5.1–6.0) and both Coomassie-blue and ammoniacal silver staining. Cytosol preparations were analyzed from six different postmortem brains from patients with various neurologic diagnoses and immediate causes of death. Intervals between death and brain freezing (−70oC) ranged from 2 to 20 h. The vast majority of proteins detected in these cytosol fractions had identical molecular weights and isoelectric points in each of six human brains examined. However, in some tissue samples tubulin was either quantitatively decreased or undetectable. The possibility that this partial or complete depletion of tubulin was related to postmortem interval and/or brain freezing was studied using rat forebrain tissue. Rat brain incubated at room temperature for up to 24 h did not reproduce the changes seen in the region of human cytosol tubulin. However, other changes seen in the two-dimensional electrophoretic pattern of rat cytosol proteins did relate to postmortem interval, brain freezing, or both. Rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum were prepared from three human brains, with highly reproducible two-dimensional patterns. Protein analysis of these membrane fractions revealed that human RER contained significant amounts of tubulin, in contrast to rat RER which contained no detectable tubulin. This discrepancy was elucidated by allowing rat brains to remain at room temperature for 24 h before freezing; gels of rat RER prepared from this tissue showed that tubulin subunits were present.  相似文献   

5.
In studies of trace elements in biological tissue, it is imperative that sample handling does not substantially change element concentrations. In many cases, fresh tissue is not available for study, but formalin-fixed tissue is. Formalin fixation has the potential to leach elements from the tissue, but few studies have been published in this area. The concentrations of 19 elements were determined by high-resolution inductively coupled plasma mass spectrometry in formalin in which human and rat brain samples had been stored for different time durations ranging from weeks up to several years. Additional analysis was carried out in fixed brain samples. There was substantial leaching of elements from the tissue into the formalin, and the leaching varied considerably between different elements. For example, formalin concentrations of As, Cd, Mg, Rb, and Sb increased more than 100-fold upon long-term (years) storage, while for Ni and Cr, the leaching was negligible. The degree of leaching was strongly time-dependent. In conclusion, formalin fixation and storage of biological tissue has the potential to leach substantial fractions of several trace elements from the tissue. The potential of leaching must be critically considered when using formalin-fixed biological tissue in trace metal analysis.  相似文献   

6.
A number of different approaches to the study of functional neurochemistry in human brain are discussed. The advantages and disadvantages of three main techniques are contrasted: (i) using animal tissue preparations as models of the human brain; (ii) using human peripheral tissue preparations as models of dynamic CNS processes; and (iii) studying human tissue, obtained postmortem, directly. Animal models are often readily obtained and reliable, and the high degree of inbreeding of common laboratory animals ensures that they usually yield consistent results. However, there are a number of human disorders for which animal models are either poor or unavailable, and species differences make extrapolation from the animal to the human case difficult. Human peripheral tissue models rely on a degree of homology between peripheral and CNS processes; in most cases, the evidence for such homologies derives from animal, rather than human, studies. Moreover, several examples are known where a peripheral process mimics the equivalent glial cell activity more closely than the neuronal, which can be a serious drawback for studies of neurotransmission. The use of postmortem human brain tissue presents a number of obvious difficulties, resulting from variations in the patient's age, agonal state, sex, preterminal medication, postmortem delay, etc. Human beings are genetically and nutritionally heterogeneous, so that data variability is usually greater here than when using tissue from laboratory animals. However, it is possible to control for a number of these factors, for example, by matching samples for basal metabolic rate and tissue integrity, and recently developed tissue freezing and storage techniques permit the use of within-subject experimental designs to help reduce experimental variation. A range of neurotransmitter functions are well retained in such tissue samples, so that regional variations, differential transmitter activities, drug effects, etc., can be studied in normal tissue samples, as well as in samples taken from cases of neurological and psychiatric disease. This allows, for example, changes in neuroanatomical indices to be correlated with localised alterations in a specific neurotransmitter function. A systematic approach to the analysis and matching of tissue samples is advocated. The three approaches should be considered to be complementary, especially for the study of human brain diseases.  相似文献   

7.
The success of molecular research and its applications in both the clinical and basic research arenas is strongly dependent on the collection, handling, storage, and quality control of fresh human tissue samples. This tissue bank was set up to bank fresh surgically obtained human tissue using a Clinical Annotated Tissue Database (CATD) in order to capture the associated patient clinical data and demographics using a one way patient encryption scheme to protect patient identification. In this study, we determined that high quality of tissue samples is imperative for both genomic and proteomic molecular research. This paper also contains a brief compilation of the literature involved in the patient ethics, patient informed consent, patient de-identification, tissue collection, processing, and storage as well as basic molecular research generated from the tissue bank using good clinical practices. The current applicable rules, regulations, and guidelines for handling human tissues are briefly discussed. More than 6,610 cancer patients have been consented (97% of those that were contacted by the consenter) and 16,800 tissue specimens have been banked from these patients in 9 years. All samples collected in the bank were QC’d by a pathologist. Approximately 1,550 tissue samples have been requested for use in basic, clinical, and/or biomarker cancer research studies. Each tissue aliquot removed from the bank for a research study were evaluated by a second H&E, if the samples passed the QC, they were submitted for genomic and proteomic molecular analysis/study. Approximately 75% of samples evaluated were of high histologic quality and used for research studies. Since 2003, we changed the patient informed consent to allow the tissue bank to gather more patient clinical follow-up information. Ninety two percent of the patients (1,865 patients) signed the new informed consent form and agreed to be re-contacted for follow-up information on their disease state. In addition, eighty five percent of patients (1,584) agreed to be re-contacted to provide a biological fluid sample to be used for biomarker research.  相似文献   

8.
Using a specific and sensitive high pressure liquid chromatographic technique for the measurement of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and tryptophan (TRP), we found that there were no changes in 5-HT or 5-HIAA in the rat cortex when left in situ for 6 h at room temperature or 24 h at 4 degrees C. Only a minimal 14% increase in 5-HT was observed after 24 h at 4 degrees C in the striatum of the same animals. Concentrations of TRP, however, were increased significantly in both brain regions by these postmortem delay procedures. A second study revealed that there were significant regional 5-HT and 5-HIAA concentration differences within the cerebral cortex. The frontal cortex was shown to have the highest concentrations of 5-HT and 5-HIAA. Further, within the frontal cortex, 5-HIAA levels varied, showing apparent progressive rostral to caudal increases. 5-HT concentrations, however, remained constant within the frontal cortex. These results are discussed in reference to the conflicting reports of the previous human suicide and postmortem studies.  相似文献   

9.
The number of proteomics studies concerning human brain samples has been increasing in recent years, in particular in the discovery of biomarkers for neurological diseases. The human brain samples are obtained from brain banks, which are interested in providing high quality human nervous tissue. In order to provide brain banks as well as scientists working in the proteomics field with measures for tissue quality, the critical factors after death, the effect of post-mortem interval (PMI) and storage temperature on the human brain proteome were investigated. This study was focused on the gray matter of the frontal cortex. The PMI was artificially prolonged from the time of autopsy (2 h after death) by storing samples at 4 degrees C or room temperature over 18, 24, and 48 h. The samples were analyzed by 2-D DIGE using a pH 4-7 gradient, revealing a time course of quantitative protein changes. The degradation of three proteins, peroxiredoxin-1, stathmin, and glial fibrillary acidic protein were further confirmed by Western-blot analysis. Proteins vulnerable to PMI were analyzed by the 2-D DIGE analysis of cortex samples from three donors, and were derived from a variety of functional groups, including metabolic, structural, stress response, antioxidants, synaptosomal, and neuronal proteins.  相似文献   

10.
In spite of considerable technical advance in MRI techniques, the optical resolution of these methods are still limited. Consequently, the delineation of cytoarchitectonic fields based on probabilistic maps and brain volume changes, as well as small-scale changes seen in MRI scans need to be verified by neuronanatomical/neuropathological diagnostic tools. To attend the current interdisciplinary needs of the scientific community, brain banks have to broaden their scope in order to provide high quality tissue suitable for neuroimaging- neuropathology/anatomy correlation studies. The Brain Bank of the Brazilian Aging Brain Research Group (BBBABSG) of the University of Sao Paulo Medical School (USPMS) collaborates with researchers interested in neuroimaging-neuropathological correlation studies providing brains submitted to postmortem MRI in-situ. In this paper we describe and discuss the parameters established by the BBBABSG to select and to handle brains for fine-scale neuroimaging-neuropathological correlation studies, and to exclude inappropriate/unsuitable autopsy brains. We tried to assess the impact of the postmortem time and storage of the corpse on the quality of the MRI scans and to establish fixation protocols that are the most appropriate to these correlation studies. After investigation of a total of 36 brains, postmortem interval and low body temperature proved to be the main factors determining the quality of routine MRI protocols. Perfusion fixation of the brains after autopsy by mannitol 20% followed by formalin 20% was the best method for preserving the original brain shape and volume, and for allowing further routine and immunohistochemical staining. Taken to together, these parameters offer a methodological progress in screening and processing of human postmortem tissue in order to guarantee high quality material for unbiased correlation studies and to avoid expenditures by post-imaging analyses and histological processing of brain tissue.  相似文献   

11.
The effect of a number of antemortem and postmortem factors on [3H]MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years [3H]MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex.  相似文献   

12.
Abstract: Studies of neurotransmitter and drug receptor alterations in neurodegenerative disorders have contributed to our understanding of the pathophysiology of these conditions. The effect of postmortem delay in freezing tissue after death and prolonged storage of tissue prior to analysis on receptor binding assays are potential artifacts that may limit interpretation of the effects of disease on receptor populations. We used a rat model of the human autopsy process to study the effects of increasing postmortem delay and storage time on N -methylscopolamine (NMS), p -aminoclonidine (PAC), flunitrazepam (FLU), and spiperone binding in a variety of rat brain regions. The rat brains were cooled using a temperature-controlled environment and thermistor probe to follow cooling curves obtained in human brain. Brains were cooled to either room temperature (22°C) or refrigerator temperature (4°C). For three of the four receptors, receptor binding decreased as postmortem delay before freezing increased, particularly in tissue cooled to room temperature. Unlike binding at other receptor sites, FLU binding increased with increasing postmortem delay to freezing. Different effects on K D and B max were noted for each ligand studied. No effects of the freezing process itself or storage at -80°C were detectable.  相似文献   

13.
Pre-and Postmortem Influences on Brain RNA   总被引:10,自引:1,他引:9  
Abstract: Many potentially valuable techniques for the understanding of human neurobiological and neuropathological processes require the use of RNA obtained from postmortem tissue. As with earlier neurochemical studies, there are two particular problems posed by such tissue in comparison with tissue from experimental animals. These are the postmortem interval and the condition of the patient prior to death, referred to as the agonal state. We review the nature and extent of the effects of postmortem interval and agonal state on RNA in brain tissue, with particular reference to the study of neuropsychiatric disorders. Perhaps surprisingly, postmortem interval has at most a modest effect on RNA. Abundant intact and biologically active RNA is present in tissue frozen 36 h or more after death. Postmortem interval does not account for the marked variability observed among human brains in all RNA parameters. Despite the overall stability of RNA after death, some evidence suggests that individual RNAs may undergo postmortem decay. Less attention has been paid to the effects of agonal state. The existing data indicate that events in the premortem period such as hypoxia and coma can affect the amount of some messenger RNAs. The nature of agonal state influences depends on the messenger RNA in question, though the basis for this selective vulnerability is unknown. No agonal state effect on overall RNA level or activity has been found. The data show that postmortem brain tissue can be used for RNA research. However, considerable attention must be paid to controlling for the influences of pre-and postmortem factors, especially when quantitative analyses are performed.  相似文献   

14.
To further understand the neuroanatomy, neurochemistry and neuropathology of the normal and diseased human brain, it is essential to have access to human brain tissue where the biological and chemical nature of the tissue is optimally preserved. We have established a human brain bank where brain tissue is optimally processed and stored in order to provide a resource to facilitate neuroscience research of the human brain in health and disease. A donor programme has been established in consultation with the community to provide for the post-mortem donation of brain tissue to the brain bank. We are using this resource of human brain tissue to further investigate the basis of normal neuronal functioning in the human brain as well as the mechanisms of neuronal dysfunction and degeneration in neurodegenerative diseases. We have established a protocol for the preservation of post-mortem adult human brain tissue firstly by snap-freezing unfixed brain tissue and secondly by chemical fixation and then storage of this tissue at -80 degrees C in a human brain bank. Several research techniques such as receptor autoradiography, DNA and RNA analysis, are carried out on the unfixed tissue and immunohistochemical and histological analysis is carried out on the fixed human tissue. Comparison of tissue from normal control cases and from cases with neurodegenerative disorders is carried out in order to document the changes that occur in the brain in these disorders and to further investigate the underlying pathogenesis of these devastating neurological diseases.  相似文献   

15.
The present study was planned to test a recent observation of positive correlation between tryptophan and 5-hydroxyindole concentrations in postmortem human hypothalamic samples. Four other brain areas were studied, but no significant correlations were observed between tryptophan and serotonin or 5-hydroxyindoleacetic acid concentrations, except in the nucleus accumbens samples of a suicide victim group. A possible in vivo correlation may have been obscured by postmortem changes. The use of tryptophan concentrations as an index for normalising postmortem brain serotonin data is not supported by the present results.  相似文献   

16.
17.
The stability of receptor proteins and mRNAs in brain tissue is variable after death. As a prelude to quantitative studies of melatonin receptor density and clock gene expression in the human brain, the stability of these macromolecules was examined in the mouse brain under simulated postmortem conditions using the model of Spokes and Koch. In the mouse suprachiasmatic nucleus (SCN), melatonin receptor binding was significantly reduced after 18 to 24 h under postmortem conditions. Two mRNAs that are rhythmically expressed in the SCN, mPer1 and prepropressophysin (AVP), also decreased significantly over the interval studied, and mPer1 declined more rapidly than AVP. Both mPer1 and AVP mRNA levels in the SCN declined more rapidly in vivo than under postmortem conditions, suggesting that the degradation of these mRNAs is an active process. The results indicate that quantitative studies of melatonin receptor density on human postmortem material are feasible and that detection of rhythmic gene expression in the human SCN will likely require collection of specimens with a rather short (< 8 h) interval from death to tissue collection. The relative stability of melatonin receptor binding in the SCN also suggests that receptor binding may be a reliable marker for the location of the SCN in studies assessing clock gene expression in postmortem material.  相似文献   

18.
19.
Summary 1. Altered mRNA levels in postmortem brain tissue from persons with Alzheimer's disease (AD) or other neurological diseases are usually presumed to be characteristic of the disease state, even though both agonal state (the physiological state immediately premortem) and postmortem interval (PMI) (the time between death and harvesting the tissue) have the potential to affect levels of mRNAs measured in postmortem tissue. Although the possible effect of postmortem interval on mRNA levels has been more carefully evaluated than that of agonal state, many studies assume that all mRNAs have similar rates of degradation postmortem.2. To determine the postmortem stability of inducible heat shock protein 70 (hsp70) mRNAs, themselves unstablein vivo at normal body temperature, rats were heat shocked in order to induce synthesis of the hsp70 mRNAs. hsp70 mRNA levels in cerebellum and cortex were then compared to those of their heat shock cognate 70 (hsc70) mRNAs, as well as to levels of 18S rRNAs, at 0 and at 24 hr postmortem.3. Quantiation of northern blots after hybridization with an hsp70 mRNA-specific oligo probe indicated a massive loss of hsp70 mRNA signal in RNAs isolated from 24-hr postmortem brains; quantitation by slot-blot hybridization was 5- to 15-fold more efficient. Even using the latter technique, hsp70 mRNA levels were reduced by 59% in 24-hr-postmortem cerebellum and by 78% in cortex compared to mRNA levels in the same region of 0-hr-postmortem brain. There was little reduction postmortem in levels of the hsp70 mRNAs or of 18S rRNAs in either brain region.4.In situ hybridization analysis indicated that hsp70 mRNAs were less abundant in all major classes of cerebellar cells after 24 hr postmortem and mRNAs had degraded severalfold more rapidly in neurons than in glia. There was no corresponding loss of intracellular 18S rRNA in any cell type.5. We conclude from these results that the effect of postmortem interval on mRNA degradation must be carefully evaluated when analyzing levels of inducible hsp70 mRNAs, and perhaps other short-lived mRNAs, in human brain.  相似文献   

20.
Despite the lack of direct cytogenetic studies, the neuronal cells of the normal human brain have been postulated to contain normal (diploid) chromosomal complement. Direct proof of a chromosomal mutation presence leading to large-scale genomic alterations in neuronal cells has been missing in the human brain. Large-scale genomic variations due to chromosomal complement instability in developing neuronal cells may lead to the variable level of chromosomal mosaicism probably having a substantial effect on brain development. The aim of the present study was the pilot assessment of chromosome complement variations in neuronal cells of developing and adult human brain tissues using interphase multicolor fluorescence in situ hybridization (mFISH). Chromosome-enumerating DNA probes from the original collection (chromosomes 1, 13 and 21, 18, X, and Y) were used for the present pilot FISH study. As a source of fetal brain tissue, the medulla oblongata was used. FISH studies were performed using uncultured fetal brain samples as well as organotypic cultures of medulla oblongata tissue. Cortex tissues of postmortem adult brain samples (Brodmann area 10) were also studied. In cultured in vitro embryonic neuronal brain cells, an increased level of aneuploidy was found (mean rate in the range of 1.3-7.0% per individual chromosome, in contrast to 0.6-3.0% and 0.1-0.8% in uncultured fetal and postmortem adult brain cells, respectively). The data obtained support the hypothesis regarding aneuploidy occurrence in normal developing and adult human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号