首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To determine the effects of chronic hyperinsulinemia on glucagon release, rats were made hyperinsulinemic for 14 days by supplementation of drinking water with sucrose (10%; sucrose-fed) to increase endogenous release or by implantation of osmotic minipumps (subcutaneous, s.c.; or intraperitoneal, i.p.) to deliver exogenous insulin (6 U/day). Both s.c. and i.p. rats also had sucrose in the drinking water to prevent hypoglycemia. Plasma insulin levels were significantly elevated in sucrose-fed, s.c., and i.p. rats. However, glucose levels were significantly elevated in sucrose-fed rats only. Surprisingly, plasma glucagon concentrations were elevated in i.p. and s.c. rats and were not suppressed in sucrose-fed rats. Inverse relationships were found between the plasma levels of insulin and glucose (n = 65; r = -0.42, p less than 0.0001) and between glucose and glucagon (n = 73; r = -0.46, p less than 0.0001). However, unexpectedly, a positive correlation between insulin and glucagon (n = 65; r = 0.47, p less than 0.0001) was established. As suppression of plasma glucagon levels below basal was not observed in any of the hyperinsulinemic or hyperglycemic rats, we wished to establish further whether pancreatic glucagon release could be suppressed below basal levels in the rat by another means. Thus, high doses of somatostatin (50-100 micrograms.kg-1.min-1) were infused for 45 min into normal rats without or with a concomitant hyperinsulinemic, hyperglycemic glucose clamp. Somatostatin fully suppressed insulin, but although plasma glucagon levels were decreased by somatostatin infusion relative to saline-infused animals, there was still no suppression below basal levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
T Karashima  A V Schally 《Peptides》1988,9(3):561-565
The action of the new analog of somatostatin, D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), on plasma glucagon and glucose levels was evaluated in streptozotocin-diabetic rats. The effect of this analog on the insulin-induced hypoglycemia in diabetic rats was also investigated in order to evaluate the risk of exacerbating hypoglycemia. Administration of analog RC-160, in a dose of 25 micrograms/kg b. wt. SC, inhibited plasma glucagon secretion and decreased plasma glucose levels. This effect also occurred when plasma glucagon and glucose levels were first elevated by arginine infusion, 1000 mg/kg/hr for 30 min. Subcutaneous injection of regular insulin, 15 U/kg b. wt., produced hypoglycemia with a progressive increase in glucagon levels. Analog RC-160 completely suppressed the hypoglycemia-induced glucagon release for up to 150 min after injection of the analog or insulin. A greater decrease in the plasma glucose level was observed in the group treated with insulin and the analog than in the group injected only with insulin. These results indicate that somatostatin analog RC-160 can produce a marked and prolonged inhibition of glucagon release and a decrease in the plasma glucose level in diabetic rats. This analog may be useful as an adjunct to insulin in the treatment of diabetic patients, although caution should be exercised, to prevent hypoglycemia when using somatostatin analogs together with insulin.  相似文献   

3.
We have demonstrated previously that cyclic somatostatin (GH-RIH) exerts a diabetogenic action in healthy subjects. To further examine the impact of this phenomenon studies of blood glucose (BG), immunoreactive insulin (IRI), glucagon (IRG) and growth hormone (GH) were performed in insulin requiring diabetics (n = 6) receiving i.v. arginine (0.5 g/kg) both in the absence and presence of i.v. GH-RIH (500 microgram/h). The infusion of GH-RIH-resulted in a persistent diminution in plasma IRI, IRG and GH. BG fell during i.v. GH-RIH during the initial 30 min and was below control values up to 45 min after initiation of i.v. arginine, but subsequently exceeded control levels (p less than 0.05 - less than 0.025). The excess rise in BG occurred in spite of suppression by somatostatin of the ariginine induced release of IRG, IRI and GH. A fall in BG was seen following cessation of i.v. GH-RIH and during a rebound of insulin release with glucagon levels remaining in the basal range. These findings indicate a diabetogenic action of somatostatin also in insulin requiring diabetics as long as some residual capacity for insulin release is retained.  相似文献   

4.
It has been previously demonstrated that glucagon increased plasma post-heparin lipolytic activity (PHLA) in normal rats, but this was not the case in alloxan diabetic rats. The present work was designed to determine if the administration of exogenous glucagon (0.2 mg i.v.) during suppression of endogenous hormone secretion with somatostatin modifies the plasma post-heparin lipolytic activity in normal rats and the action of such hormone upon monoglyceride hydrolase (MGH) activity. It was found that exogenous glucagon significatively increased PHLA and MGH activity in normal rats after 18-24 hours of starvation. However, both enzymatic activities were not influenced by exogenous glucagon when they were measured during somatostatin administration. Therefore it is believed that the enhancement of these activities observed when somatostatin was not simultaneously given was due to the insulin secretion that follows the glucagon injection.  相似文献   

5.
Biological activities of highly potent octapeptide analogs of somatostatin (SS), D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160) and D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), were investigated in male rats. When analog RC-160 was administered to rats in which serum growth hormone (GH) levels were elevated by pentobarbital anesthesia, a dose-related inhibition of GH was obtained at dose range of 0.1 to 2.5 micrograms/kg. The time course of GH inhibition by RC-160, RC-121 and SS-14 was studied in rats treated with phenobarbital, morphine and chlorpromazine. Analogs RC-160 and RC-121 induced a prolonged inhibition of GH levels, in contrast to SS-14, whose effect was short-lived. The analogs suppressed the GH level for more than 2 hr, the peak inhibition being seen 30 to 60 min after the injection. The effects of analogs RC-160 and RC-121 on insulin secretion were observed in rats, in which insulin levels had been elevated by intravenous administration of glucose (500 mg/rat). Administration of RC-160 suppressed insulin secretion, dose-dependently, maximum but not complete inhibition being achieved at a dose of 100 micrograms/kg. In this model, RC-160 and RC-121, in doses of 30 micrograms/kg, induced a similar inhibition of insulin release as 200 micrograms/kg of SS-14, whose action of SS-14 was transient. The effect of analog RC-160 on glucagon release was studied in rats with glucagon levels elevated by hypoglycemia. RC-160 suppressed the secretion of glucagon, the inhibition being dose-dependent in the range of 0.1 to 2 micrograms/kg. Doses of 2 and 10 micrograms/kg of this analog completely suppressed the hypoglycemia-induced glucagon release. These results indicate that analogs RC-160 and RC-121 possess prolonged and enhanced biological activities, the former analog showing a high selectivity in inhibiting GH and glucagon release in vivo as compared with that of insulin secretion.  相似文献   

6.
We have utilized the relative structural simplicity of several short, cyclic, highly active somatostatin analogs in the search for competitive antagonists of somatostatin. During an attempted synthesis of cyclo(7-aminoheptanoyl-Phe-D-Trp-Lys-Thr), catalytic hydrogenation of the protected peptide intermediate unexpectedly gave cyclo [7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)] in which the benzyl protecting group on Thr could not be removed even upon prolonged treatment under standard conditions. Injection of this new peptide into the rat completely blocked the inhibitory effects of exogenous somatostatin on GH, insulin, and glucagon release. Indeed, in fasted rats, basal hepatic portal insulin and glucagon levels were significantly increased after analog treatment. Plasma GH levels in Nembutal-anesthetized and stimulated rats were also increased after injection of the analog. These results provide strong evidence that endogenous somatostatin exerts local tonic control of pituitary and pancreatic secretions. The availability of a somatostatin anatagonist should be of considerable value in elucidating the roles of somatostatin in these and many other physiological processes.  相似文献   

7.
It was early proposed that somatostatin-producing delta-cells in pancreatic islets have local inhibitory effects on the release of insulin and glucagon. Recent observations that pulses of insulin and glucagon are antisynchronous make it important to examine the temporal characteristics of glucose-induced somatostatin release. Analysis of 30 s fractions from the perfused rat pancreas indicated that increase of glucose from 3 to 20 mmol/l results in initial suppression of somatostatin release followed by regular 4-5 min pulses. During continued exposure to 20 mmol/l glucose, the pulses of somatostatin overlapped those of insulin with a delay of 30 s. Somatostatin and glucagon pulses were coupled in antisynchronous fashion (phase shift 2.4+/-0.2 min), supporting the idea that the delta-cells have a local inhibitory effect on glucagon release. It was possible to remove the pulses of somatostatin and glucagon with maintenance of the insulin rhythmicity by addition of 1 micromol/l of the P2Y(1) receptor antagonist MRS 2179.  相似文献   

8.
Segments of freshly dissected rat hypothalamic tissue corresponding to the ventrolateral (VLH) and ventromedial (VMH) regions were incubated in Gey and Gey medium at 37 C under 95% O2 and 5% CO2 for 30 minutes. Groups of male rats which had been fasted for 6 hours received injections (i.v.) of either VMH medium or VLH medium while a third group received control medium only. Blood samples were taken from the aorta 3 minutes post-injection and circulating levels of insulin and glucagon were determined by RIA. The medium from the incubation of the VMH tissue significantly elevated glucagon levels and significantly lowered plasma concentrations of insulin compared to the levels in animals receiving injections of control medium. The hormone levels in animals receiving an injection of medium in which VLH tissue had been incubated did not differ significantly from the controls. In another type of experiment VMH medium, but not VLH medium, was able to overcome the somatostatin-induced inhibition of glucagon release. These observations suggest that hypothalamic factors may be involved in the regulation of the endocrine pancreas.  相似文献   

9.
The effect of galanin on pancreatic hormone release was studied using isolated perifused rat pancreatic islets. In the presence of 100 mg/dl glucose, 10(-8) mol/L galanin significantly inhibited the basal somatostatin release compared with the perifusion without galanin, whereas there was no significant change in the basal insulin and glucagon release. However, under stimulation of 20 mmol/L arginine, 10(-8) mol/L galanin significantly enhanced glucagon release and suppressed insulin and somatostatin release. These effects disappeared immediately after cessation of galanin infusion. Additionally, 10(-8) mol/L galanin significantly enhanced the first and second phase of glucagon release stimulated by arginine, whereas arginine-stimulated insulin and somatostatin releases were significantly inhibited in both phases. In the cysteamine-treated rat islets, neither enhancement of glucagon release nor suppression of insulin release by galanin was reproducible. These findings indicate two possible explanations. First, it is suggested that the effects of galanin on insulin and glucagon release may be direct and reversed by non-specific effect of cycteamine. Secondly, it seems likely that galanin-enhanced glucagon release may be indirect and in part due to the concomitant somatostatin suppression. Galanin may have an important regulatory function on endocrine pancreas.  相似文献   

10.
The hypothesis that depression of insulin and glucagon levels during rapid, acute hemorrhage is controlled by somatostatin was supported by hormonal changes measured in the cat. By 5 min of hemorrhage to 50 mmHg (1 mmHg = 133.322 Pa) arterial blood pressure, insulin and glucagon were severely depressed and somatostatin levels rose to 232% of basal levels. Insulin and glucagon suppression was maintained for the 30-min period of hemorrhage. Following return of the blood, somatostatin levels remained high and insulin and glucagon suppression was maintained. The data support, but do not prove, the hypothesis.  相似文献   

11.
The use of Jet injection in insulin administration pointed out the question whether this route could affect insulin absorption and plasma insulin profiles. To compare plasma insulin profiles following an administration of an identical insulin dose by jet injection or by conventional subcutaneous route (syringe with needle) 8 healthy subjects (age 24-28 yrs., non obese) were given at 09.00 h of two different days 200 mU/kg/BW of human semisynthetic regular insulin (Novo Actarapid) alternatively subcutaneously by a syringe with needle or transcutaneously by jet injection (DG 77 - Sicim - Gorizia). Before insulin administration and then 15, 30, 60, 90, 120 and 180 minutes after, blood samples were drawn for plasma insulin and C-peptide determination. Higher plasma insulin levels after administration by jet were found at 15' and 30' minutes (62,58 +/- 6,31 v.s. 36,94 +/- 3,31 microunits/ml at 15' and 76,51 +/- 9,60 v.s. 51,65 +/- 9,95 at 30', p less than 0,01 and p less than 0,005, paired Student t test). No difference could be observed for the other times. C-peptide was found to fall to undetectable values, confirming the nearly total suppression of endogenous insulin production. It is concluded that total regular insulin absorption does not differ after transcutaneous jet injection or administration by syringe with needle, but in the first case it is faster. This last finding should be considered in planning insulin treatment schedules.  相似文献   

12.
The cyclic hexapeptide, cyclo (Pro-Phe-D-Trp-Lys-Thr-Phe), I, has been shown to have the biological properties of somatostatin. We now report structure-activity studies which optimize the potency of this cyclic hexapeptide series with the synthesis of cyclo (N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe), II, which is 50–100 times more potent than somatostatin for the inhibition of insulin, glucagon and growth hormone release. The hydroxyl group of tyrosine is seen to lend a 10-fold enhancement to the potency. Potency also is found to be correlated with hydrophobicity. II is found to improve the control of postprandial hyperglycemia in diabetic animals when given in combination with insulin. The analog is found to be quite stable in the blood and in the gastrointestinal tract, but the bioavailability after oral administration is only 1–3%. The biological properties and long duration of II should allow clinical evaluation of the inhibition of glucagon release as an adjunct to insulin in the treatment of patients with diabetes.  相似文献   

13.
Previous studies have indicated a possible influence of gastric emptying on postprandial pancreatic endocrine function and the present study was designed to determine if the rate at which nutrients enter the small intestine may play a role in the postprandial regulation of insulin, glucagon, somatostatin and gastrin release in conscious dogs. In response to an intraduodenal instillation of a liver extract--sucrose test meal postprandial insulin and glucagon levels increased significantly with increasing infusion rates of the test meal, whereas somatostatin and gastrin levels did not change. The rise of the endocrine factors preceded any increase of peripheral vein plasma glucose levels. The present data demonstrate that during the intestinal phase of a meal the rate of nutrient entry into the duodenum favours insulin and glucagon but not somatostatin and gastrin release. This mechanism could be of importance in the regulation of nutrient homeostasis during the ingestion of certain carbohydrate containing meals.  相似文献   

14.
A nonreducible cyclic analog of somatostatin (SRIF) was prepared by a combination of solid phase and solution peptide synthesis. The compound, gamma-Abu-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Asp-OH, was tested for its effect on the release of growth hormone, glucagon and insulin in rats. It significantly suppressed pentobarbital-stimulated growth hormone release but showed no effect on arginine-stimulated glucagon or insulin release. The linear form, NH2-gamma-Abu-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Asp-OH, was also prepared and tested in vivo. It was shown to have only slight activity.  相似文献   

15.
Insulin, glucagon, and somatostatin concentrations were measured in 7 lean and 7 obese non-diabetic subjects over 7 days of fasting. In addition each subject was given a 75 g oral glucose tolerance test after fasts of 12 h and 7 days. In lean subjects complete food deprivation induced a significant decrease in the circulating levels of both insulin and somatostatin, while glucagon nearly doubled by 48 h and then remained constant for the duration of starvation. Refeeding with oral glucose suppressed the increased plasma glucagon, but insulin and somatostatin responses were enhanced in comparison with the prefast values, as assessed by the integrated areas of change. In obese subjects peripheral insulin and somatostatin levels were significantly lowered, but plasma glucagon level was unchanged at the end of the starvation period. In the same group glucose-induced insulin and somatostatin release were greater than in the fed state. Suppression of plasma glucagon by glucose appeared less complete in obese than in lean subjects. It is concluded that prolonged starvation enhances D-cell responsiveness to glucose in lean and obese subjects.  相似文献   

16.
The secretory response and immunoreactive heterogeneity of glucagon was investigated in a patient with glucagonoma syndrome. After glucose administration, abnormal insulin release accompanied by glucose intolerance were observed, whereas the high glucagon circulating levels were only partially blocked after glucose or somatostatin infusion. Chromatographic fractionation of plasma samples, before and after arginine administration showed that most of the immunoreactivity eluted as true glucagon. Furthermore, when aliquots of the tumor extracts were fractionated by column chromatography or by polyacrylamide gel electrophoresis, most of the immunoreactivity eluted in the 3,500 molecular weight peak. In contrast with previous reports, our results indicate that neoplasia A cells can also manufacture and release into the bloodstream great amounts of genuine glucagon rather than larger glucagon immunoreactive forms. In spite of such findings, in this patient neither diabetes nor hyperglycemia were present.  相似文献   

17.
C Martin  B Wallum  B Krom  L Hall  J Gerich 《Life sciences》1984,35(26):2627-2633
The effects of a zinc phosphate suspension of a long-acting, reportedly selective somatostatin analog, Des-Ala1,Gly2 [His4,5,D-Try]-somatostatin (100 micrograms/kg) on postprandial plasma glucose, glucagon, xylose and triglyceride levels were evaluated in alloxan diabetic dogs. Compared to the analog in aqueous solution, the zinc phosphate suspension had a more gradual onset of action in suppressing plasma glucose and xylose levels but a similar onset of action on suppression of plasma triglyceride and glucagon responses. On all these responses, the zinc suspension had a duration of action (greater than 6 hrs) at least three times as long as the aqueous solution. We conclude that such a somatostatin analog in zinc phosphate suspension may have a sufficient duration of action to be useful as an adjunct to insulin in the treatment of diabetes mellitus.  相似文献   

18.
In order to study the oeffect of somatostatin on the endocrine pancreas directly, islets isolated from rat pancreas by collagenase were incubated for 2 hrs 1) at 50 and 200 mg/100 ml glucose in the absence and presence of somatostatin (1, 10 and 100 mg/ml) and2) at 200 mg/100 ml glucose together with glucagon (5 mug/ml), with or without somatostatin (100 ng/ml). Immunologically measurable insulin was determined in the incubation media at 0, 1 and 2 hrs. Insulin release was not statistically affected by any concentration stomatostatin. On the other hand, somatostatin exerted a significant inhibitory action on glucagon-potentiated insulin secretion (mean +/- SEM, mu1/2 hrs/10 islets: glucose and glucagon: 1253 +/- 92; glucose, glucagon and somatostatin: 786 +/- 76). The insulin output in th epresence of glucose, glucagon and somatostatin was also significantly smaller than in thepresence of glucose alone (1104 +/- 126) or of glucose and somatostatin (1061 +/- 122). The failure of somatostatin to affect glucose-stimulated release of insulin from isolated islets contrasts its inhibitory action on insulin secretion as observed in the isolated perfused pancreas and in vivo. This discrepancy might be ascribed to the isolation procedure using collagenase. However, somatostatin inhibited glucagon-potentiated insulin secretion in isolated islets which resulted in even lower insulin levels than obtained in the parallel experiments without glucagon. It is concluded that the hormone of the alpha cells, or the cyclic AMP system, might play a part in the machanism of somatostatin-induced inhibition of insulin release from the beta-cell.  相似文献   

19.
One mg of glucagon was given subcutaneously to eight patients with active acromegaly. Seven out of eight patients had a rapid decrease in serum growth hormone (GH) levels at 30 min after the glucagon injection. In two out of seven patients a rebound increase in serum GH following the early GH reduction was observed. On the other hand, oral administration of 50 g glucose which caused a comparable increase in blood glucose to that after the glucagon injection elicited no early suppression in serum GH levels in the same patients. These data suggest that the inhibition of GH release induced by glucagon could not be related to the increase in blood glucose by glucagon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号