首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surveys of marine birnavirus (MABV) were undertaken in cultured olive flounder Paralichthys olivaceus from the south and west coastal areas and Jeju in Korea during the period January 1999 to April 2007. MABV was detected in all seasons from the fry, juveniles and adult fish from the areas examined. Evident cytopathic effects of the virus including rounding and cell lysis were observed in chinook salmon embryo (CHSE-214) and rainbow trout gonad (RTG-2) cells, but not in fathead minnow (FHM) and epithelial papilloma of carp (EPC) cells. Nucleotide sequences of the VP2/NS junction region of the Korean isolates showed 97.8% ~ 100% similarity, and they belonged to the same genogroup. Cross neutralization tests with serotype-specific rabbit antisera against MABV strains exhibited a close antigenic relationships between strains, and were distinct from infectious pancreatic necrosis virus (IPNV) strains. Coinfection of MABV with bacteria (Streptococcus iniae, Vibrio spp.) and viruses (nervous necrosis virus, lymphocystis disease virus, viral hemorrhagic septicemia virus) was observed.  相似文献   

2.
3.
An aquatic birnavirus, first isolated in Australia from farmed Atlantic salmon in Tasmania in 1998, has continued to be re-isolated on an infrequent but regular basis. Due to its low pathogenicity, there has been little urgency to undertake a comprehensive characterisation of this aquatic birnavirus. However, faced with possible incursions of any new aquatic birnaviruses, specific identification and differentiation of this virus from other, pathogenic, aquatic birnaviruses such as infectious pancreatic necrosis virus (IPNV) are becoming increasingly important. The present study determined the nucleic acid sequence of the aquatic birnavirus originally isolated in 1998, as well as a subsequent isolate from 2002. The sequences of the VP2 and VP5 genes were compared to that of other aquatic birnaviruses, including non-pathogenic aquatic birnavirus isolates from New Zealand and pathogenic infectious pancreatic necrosis virus isolates from North America and Europe. The deduced amino acid (aa) sequences indicate that the Australian and New Zealand isolates fall within Genogroup 5 together with IPNV strains Sp, DPL, Fr10 and N1. Thus, Genogroup 5 appears to contain aquatic birnavirus isolates from quite diverse host and geographical ranges. Using the sequence information derived from this study, a simple diagnostic test has been developed that differentiates the current Australian isolates from all other aquatic birnaviruses, including the closely related isolates from New Zealand.  相似文献   

4.
5.
During routine sampling and testing, as part of a systematic surveillance program (the Tasmanian Salmonid Health Surveillance Program), an aquatic birnavirus was isolated from 'pin-head' (fish exhibiting deficient acclimatisation on transfer to saltwater) Atlantic salmon Salmo salar, approximately 18 mo old, farmed in net-pens located in Macquarie Harbour on the west coast of Tasmania, Australia. The isolate grows readily in a range of fish cell lines including CHSE-214, RTG-2 and BF-2 and is neutralised by a pan-specific rabbit antiserum raised against infectious pancreatic necrosis virus (IPNV) Ab strain and by a commercial pan-specific IPNV-neutralising monoclonal antibody. Presence of the virus was not associated with gross clinical signs. Histopathological examination revealed a range of lesions particularly in pancreatic tissue. The virus was localised in pancreas sections by immunoperoxidase staining using the polyclonal antiserum and by electron microscopy. Examination by electron microscopy demonstrated that the virus isolated in cell culture (1) belongs to the family Birnaviridae, genus Aquabirnaviridae; (2) was ultrastructurally and antigenically similar to virus identified in the index fish; (3) is related to IPNV. Western blot analysis using the polyclonal rabbit antiserum confirmed the cross-reactions between various aquatic birnavirus isolates. In addition, PCR analysis of isolated viral nucleic acid from the index case indicated that the virus is more closely related to IPNV fr21 and N1 isolates than to other birnavirus isolates available for comparison. Sampling of other fish species within Macquarie Harbour has demonstrated that the virus is present in several other species of fish including farmed rainbow trout Oncorhynchus mykiss, wild flounder Rhombosolea tapirina, cod Pseudophycis sp., spiked dogfish Squalus megalops and ling Genypterus blacodes.  相似文献   

6.
The polyprotein of infectious pancreatic necrosis virus (IPNV), a birnavirus, is processed by the viral protease VP4 (also named NS) to generate three polypeptides: pVP2, VP4, and VP3. Site-directed mutagenesis at 42 positions of the IPNV VP4 protein was performed to determine the active site and the important residues for the protease activity. Two residues (serine 633 and lysine 674) were critical for cleavage activity at both the pVP2-VP4 and the VP4-VP3 junctions. Wild-type activity at the pVP2-VP4 junction and a partial block (with an alteration of the cleavage specificity) at the VP4-VP3 junction were observed when replacement occurred at histidines 547 and 679. A similar observation was made when aspartic acid 693 was replaced by leucine, but wild-type activity and specificity were found when substituted by glutamine or asparagine. Sequence comparison between IPNV and two birnavirus (infectious bursal disease virus and Drosophila X virus) VP4s revealed that serine 633 and lysine 674 are conserved in these viruses, in contrast to histidines 547 and 679. The importance of serine 633 and lysine 674 is reminiscent of the protease active site of bacterial leader peptidases and their mitochondrial homologs and of the bacterial LexA-like proteases. Self-cleavage sites of IPNV VP4 were determined at the pVP2-VP4 and VP4-VP3 junctions by N-terminal sequencing and mutagenesis. Two alternative cleavage sites were also identified in the carboxyl domain of pVP2 by cumulative mutagenesis. The results suggest that VP4 cleaves the (Ser/Thr)-X-Ala / (Ser/Ala)-Gly motif, a target sequence with similarities to bacterial leader peptidases and herpesvirus protease cleavage sites.  相似文献   

7.
Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.  相似文献   

8.
Oshima S  Imajoh M  Hirayama T 《Uirusu》2005,55(1):133-144
Marine birnavirus (MABV) is a member of the genus Aquabirnavirus of the family Birnaviridae. MABV is an unenveloped icosahedral virus about 60 nm in diameter with two genomes of double-stranded RNA. MABV adsorbed not only onto the cell surfaces of susceptible (CHSE-214 and RSBK-2) cells but also onto resistant (FHM and EPC) cells. Furthermore, the virus entered into the cytoplasm through the endocytotic pathway in CHSE-214, RSBK-2 and FHM cells but did not penetrate EPC cells. The virus was found to bind to an around 250 kDa protein on CHSE-214, RSBK-2, FHM and EPC cells. The syntheses of viral proteins pVP2, NS and VP3 and further proteolytic processing after viral infection were examined by using Western blot analysis. pVP2, NS and VP3 were detected in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 4 h after infection. At this time, VP3 underwent further proteolytic processing in the cytosolic fractions of CHSE-214 and RSBK-2 cells. The expression of pVP2, NS and VP3 increased and pVP2 and NS also underwent further proteolytic processing similar to VP3 in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 8 h after infection. The further proteolytic processing of VP3 was detected in the nuclear fractions of CHSE-214, RSBK-2, but VP3 was detected as a single band in the nuclear fraction of FHM cells. pVP2 and NS were detected as thin bands only in the nuclear fractions of CHSE-214 cells. The results of Western blot analysis demonstrated that pVP2, NS and VP3 are localized in the nuclear fraction when they were independently expressed in CHSE-214, RSBK-2, FHM and EPC cells. The expression pattern in the cytosolic fraction was identical among the four cell lines when pVP2 and NS were independently expressed. However, pVP2 and NS were not detected in the nuclear fraction of CHSE-214 cells. Further proteolytic processing of VP3 was detected in both cytosolic and nuclear fractions of RSBK-2 ,FHM and EPC cells (Low level in EPC cell), but not in CHSE-214 cells when VP3 was independently expressed. Then, the processes of preVP2 to form morphological assemblages in the presence of VP3 or the cleavage of VP3 into two proteins in CHSE-214 cells were studied. When preVP2- and VP3 were co-expressed, virion like particles (64 nm, diameter) were observed close to the nuclear membrane by electron microscopy. The co-expression of preVP2 and the cleaved VP3 proteins led to an efficient assembly of tubules (22 nm, diameter). Further important finds will be obtained by this infection system using 4 fish cell lines in the next couple of years.  相似文献   

9.
Infectious pancreatic necrosis virus (IPNV), an aquatic birnavirus that infects salmonid fish, encodes a large polyprotein (NH(2)-pVP2-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease, VP4, to release the proteins pVP2 and VP3. pVP2 is further processed to give rise to the capsid protein VP2 and three peptides that are incorporated into the virion. Reported here are two crystal structures of the IPNV VP4 protease solved from two different crystal symmetries. The electron density at the active site in the triclinic crystal form, refined to 2.2-A resolution, reveals the acyl-enzyme complex formed with an internal VP4 cleavage site. The complex was generated using a truncated enzyme in which the general base lysine was substituted. Inside the complex, the nucleophilic Ser(633)Ogamma forms an ester bond with the main-chain carbonyl of the C-terminal residue, Ala(716), of a neighboring VP4. The structure of this substrate-VP4 complex allows us to identify the S1, S3, S5, and S6 substrate binding pockets as well as other substrate-VP4 interactions and therefore provides structural insights into the substrate specificity of this enzyme. The structure from the hexagonal crystal form, refined to 2.3-A resolution, reveals the free-binding site of the protease. Three-dimensional alignment with the VP4 of blotched snakehead virus, another birnavirus, shows that the overall structure of VP4 is conserved despite a low level of sequence identity ( approximately 19%). The structure determinations of IPNV VP4, the first of an acyl-enzyme complex for a Ser/Lys dyad protease, provide insights into the catalytic mechanism and substrate recognition of this type of protease.  相似文献   

10.
11.
Distribution of marine type of Aquabirnavirus (MABV) was examined in shellfish and fish from Okinawa and Ishigaki Islands, Japan, where water temperature is higher than 25°C through the year. Genome detection and virus isolation were performed for shellfish and fish samples, and the results revealed the prevalent distribution of MABV in diverse species in the area, although isolation was not frequently. Detection rate of MABV genome in bivalves was higher than gastropods, which was similar result to former report in mainland of Japan. Furthermore, the unique five-nucleotide deletion was found with a high rate of occurrence in the MABV genome from shellfish and fish. This study showed distribution status of MABV in organisms in subtropical waters by wide monitoring, and discovered new genome variation in VP2/NS region of this virus.  相似文献   

12.
This study aims to determine the seasonal occurrence of marine birnavirus (MABV) at a coastal site in the Uwa Sea, Japan, in 1997 and 1998. To detect MABV from seawater, a simple method was developed for concentrating MABV by dialysis and ethanol precipitation. The concentrated virus was used for polymerase chain reaction (PCR), enzyme-linked immunosorbent assay, and virus isolation. Viral genome was detected through the experimental period. The amount of PCR product varied; it was small in summer, but increased from fall to winter. Viral protein was also detected, and the amount in the January sample was equivalent to approximately 102 TCID50 (50% tissue culture infectious dose) of the virus. However, infectious viruses were not isolated. This suggested that MABV was released from hosts to environmental seawater in winter and possibly degraded after release. Received May 7, 1999; accepted September 16, 1999.  相似文献   

13.
Several isolates of aquatic birnaviruses were recovered from different species of wild fish caught in the Flemish Cap, a Newfoundland fishery close to the Atlantic coast of Canada. The nucleotide sequence of a region of the NS gene was identical among the isolates and was most similar to the Dry Mills and West Buxton reference strains of infectious pancreatic necrosis virus (IPNV). Phylogenetic analysis of the sequence of a region of the VP2 gene demonstrated that the isolates were most closely aligned with the American strains of IPNV serotype A1. Electron microscopy of virus structures clarified and concentrated from cultures of infected chinook salmon embryo (CHSE-214) cells revealed a majority of typical IPNV-like icosahedral particles, as well as a low proportion of type I tubules having a diameter of approximately 55 nm and a variable length of up to 2 microm. The tubules could be propagated in cell cultures, but always in the presence of low proportions of icosahedral particles. Cloning of selected isolates by serial dilution yielded preparations with a high proportion of the tubular structures with a density in CsCl gradients of approximately 1.30 g cm(-3). Polyacrylamide gel electrophoresis revealed the material in the band was composed of the IPNV pVP2 and VP2 proteins.  相似文献   

14.
Infectious pancreatic necrosis virus (IPNV) is the causative agent of infectious pancreatic necrosis (IPN) disease in salmonid fish. Recent studies have revealed variation in virulence between isolates of the Sp serotype, associated with certain residues of the structural protein VP2. The isolates are also highly heterogenic in the coding region of the nonstructural VP5 protein. To study the involvement of this protein in the pathogenesis of disease, we generated three recombinant VP5 mutant viruses using reverse genetics. The "wild-type" recombinant NVI15 (rNVI15) virus is virulent, having a premature stop codon at nucleotide position 427, putatively encoding a truncated 12-kDa VP5 protein, whereas rNVI15-15K virus encodes a 15-kDa protein. Recombinant rNVI15-deltaVP5 virus contains a mutation in the initiation codon of the VP5 gene that ablates the expression of VP5. Atlantic salmon postsmolts were challenged to study the virulence characteristics of the recovered viruses in vivo. The role of VP5 in persistent infection was investigated by challenging Atlantic salmon fry with the recovered viruses, as well as with the low-virulence field strain Sp103 and a naturally occurring VP5-deficient mutant of Sp103. The results show that VP5 is not required for viral replication in vivo, and its absence does not alter the virulence characteristics of the virus or the establishment of persistent IPNV infection.  相似文献   

15.
Infectious pancreatic necrosis viruses (IPNVs) exhibit a wide range of virulence in salmonid species. In previous studies, we have shown that the amino acid residues at positions 217 and 221 in VP2 are implicated in virulence. To pinpoint the molecular determinants of virulence in IPNV, we generated recombinant IPNV strains using the cRNA-based reverse-genetics system. In two virulent strains, residues at positions 217 and 247 were replaced by the corresponding amino acids of a low-virulence strain. The growth characteristics of the recovered chimeric strains in cell culture were similar to the low-virulence strains, and these viruses induced significantly lower mortality in Atlantic salmon fry than the parent strains did in in vivo challenge studies. Furthermore, the virulent strain was serially passaged in CHSE-214 cells 10 times and was completely characterized by nucleotide sequencing. Deduced amino acid sequence analyses revealed a single amino acid substitution of Ala to Thr at position 221 in VP2 of this virus, which became highly attenuated and induced 15% cumulative mortality in Atlantic salmon fry, compared to 68% mortality induced by the virulent parent strain. The attenuated strain grows to higher titers in CHSE cells and can be distinguished antigenically from the wild-type virus by use of a monoclonal antibody. However, the virulent strain passaged 10 times in RTG-2 cells was stable, and it retained its antigenicity and virulence. Our results indicate that residues Thr at position 217 (Thr217) and Ala221 of VP2 are the major determinants of virulence in IPNV of the Sp serotype. Highly virulent isolates possess residues Thr217 and Ala221; moderate- to low-virulence strains have Pro217 and Ala221; and strains containing Thr221 are almost avirulent, irrespective of the residue at position 217.  相似文献   

16.
This study examines the seasonal changes of marine birnavirus (MABV) in seawater and the Japanese pearl oyster Pinctada fucata reared at different depths (2 and 15 m). Oysters and seawater were collected in 1998, and a 2-step PCR was carried out to detect MABV. Virus isolation was performed on the PCR-positive samples in the oyster. The detection rate of the MABV genome in the oyster was low during June, but increased after July at both 2 and 15 m depths. MABV was not isolated until after September, when isolation rates of 10 to 28.6% were recorded. The results suggest that growth of MABV in the oyster is similar at 2 and 15 m depth. In contrast, the MABV genome in seawater was present through the year at 15 m depth, but was not detected in summer at 2 m. This suggests that the virus is destroyed by UV and/or other factors at 2 m in summer, but is stable in deeper waters.  相似文献   

17.
18.
Infectious pancreatic necrosis virus (IPNV) and infectious salmon anaemia virus (ISAV) are economically important pathogens of the salmonid aquaculture industry. Atlantic salmon were challenged by intraperitoneal injection (i.p.) with either virus followed by time-course sampling. Cohabiting fish in the IPNV challenge were also sampled. Kidney tissue was analysed using a TaqMan real-time PCR assay to measure the expression of a range of host immune genes in relation to the endogenous control, elongation factor 1 alpha (ELF). Host genes measured included Mx, type I and type II interferon (IFN), gammaIFN induced protein (gammaIP), interleukin-1 beta (IL-1beta) and tumour necrosis factor alpha (TNF-alpha). Viral levels were also measured. In i.p. injected fish, both viruses greatly induced expression of Mx, gammaIP, type I and type II IFN by day 6 post-infection, however only ISAV caused substantial mortality. Some differences between the expression kinetics produced by both viruses were noted. Infection with ISAV increased IL-1beta expression following day 6, but no effect was seen in fish infected with IPNV. Neither virus induced TNF-alpha expression. This study confirms the presence of both type I and type II IFN responses and their induced genes in Atlantic salmon upon infection with an orthomyxovirus and a birnavirus.  相似文献   

19.
Aquatic birnaviruses, such as infectious pancreatic necrosis virus (IPNV), cause serious diseases in a variety of fish species used worldwide in aquaculture and have also been isolated from a variety of healthy fish and shellfish species. These viruses exhibit a high degree of antigenic heterogeneity and variation in biological properties such as pathogenicity, host range, and temperature of replication. To better understand genetic and biological diversity among these viruses, the nucleotide and deduced amino acid sequences were determined from cDNA of the large open reading frame (ORF) of genome segment A of the 9 type strains of Serogroup A and 4 other representative strains of Serotype A1, the predominant serotype in the United States. In addition, nucleotide and deduced amino acid sequences were determined for the VP2 coding region of a variety of isolates representing 5 of the 9 serotypes. VP2 is the major outer capsid protein of aquatic birnaviruses. RT-PCR was used to amplify a 2904 bp cDNA fragment including all but a few bp of the large ORF of genome segment A or a 1611 bp fragment representing the entire VP2 coding region. Nucleotide and deduced amino acid sequences were determined from the PCR products. Pairwise comparisons were made among our data and 2 other aquatic birnavirus sequences previously published. Several hypervariable regions were identified within the large ORF. The most divergent pair of viruses exhibited a similarity of 80.1% in the deduced amino acid sequence encoded by the large ORF. Genomic relationships revealed in a phylogenetic tree constructed from comparison of the deduced amino acid sequences of the large ORF demonstrated that these viruses were clustered into several genogroups. Phylogenetic comparison of the deduced amino acid sequences of the VP2 coding region of 28 aquatic birnavirus isolates, including the type strains of all 9 serotypes, demonstrated 6 genogroups, some of which were comprised of several genotypes. The most divergent pair of viruses exhibited a similarity of 81.2% in the deduced amino acid sequence from the VP2 coding region. In contrast to previous studies of much shorter genomic sequences within the C-terminus-pVP2/NS junction coding region, these genogroups based on the entire large ORF or the VP2 coding region generally correlated with geographical origin and serological classification. Isolates from the major Canadian serotypes were more closely related to the European isolates than to isolates from the United States.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号