首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. The resistance mechanisms are complex and melanoma cells may have diverse possibilities for regulating apoptosis to generate apoptotic deficiencies. In this study, we investigated the relationship between melanogenesis and resistance to apoptosis induced by ursolic acid, a natural chemopreventive agent, in B16-F0 melanoma cells. We demonstrated that cells undergoing apoptosis are able to delay their own death. It appeared that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were clearly implicated in an apoptosis resistance mechanism; while TRP-2, a well known mediator of melanoma resistance to cell death, was repressed. Our results confirm the difficulty of treating melanomas, since, even undergoing apoptosis, cells are nevertheless able to trigger a resistance mechanism to delay death.  相似文献   

3.
PG19T3 mouse melanoma cells were selected for resistance to methotrexate. Nine sub-lines that are resistant to concentrations of methotrexate ranging from 1.27×10–7 M, to 1×10–4M methotrexate were selected and characterised in terms of their content of dihydrofolate reductase activity and their chromosomes. The intracellular level of dihydrofolate reductase activity increases with increasing resistance such that at the highest level of resistance PG19T3:MTXR 10–4 M cells contain approximately 1,000 fold more enzyme activity than the parental PG19T3 cells. It is shown that the enhanced activity is due to an increase in the amount of the enzyme rather than any structural change to the enzyme in resistant cellls. Comparisons of pH activity profiles, profiles under different activating conditions and titrations with methotrexate suggest that the sensitive and resistant cells contain identical dihydrofolate reductases. Analysis of the chromosomes of resistant cells shows the presence of up to 5 large marker chromosomes which contain homogeneously staining regions after G-banding. These same regions stain intensely after C-banding and fluoresce brightly after staining with Hoechst 33258. The size of homogeneously staining regions increases throughout the process of selection. For one marker chromosome this increase may have been mediated via a ring chromosome.  相似文献   

4.
Constitutively-activated tyrosine kinase mutants, such as BCR/ABL, FLT3-ITD, and Jak2-V617F, play important roles in pathogenesis of hematopoietic malignancies and in acquisition of therapy resistance. We previously found that hematopoietic cytokines enhance activation of the checkpoint kinase Chk1 in DNA-damaged hematopoietic cells by inactivating GSK3 through the PI3K/Akt signaling pathway to inhibit apoptosis. Here we examine the possibility that the kinase mutants may also protect DNA-damaged cells by enhancing Chk1 activation. In cells expressing BCR/ABL, FLT3-ITD, or Jak2-V617F, etoposide induced a sustained activation of Chk1, thus leading to the G2/M arrest of cells. Inhibition of these kinases by their inhibitors, imatinib, sorafenib, or JakI-1, significantly abbreviated Chk1 activation, and drastically enhanced apoptosis induced by etoposide. The PI3K inhibitor GD-0941 or the Akt inhibitor MK-2206 showed similar effects with imatinib on etoposide-treated BCR/ABL-expressing cells, including those expressing the imatinib-resistant T315I mutant, while expression of the constitutively activated Akt1-myr mutant conferred resistance to the combined treatment of etoposide and imatinib. GSK3 inhibitors, including LiCl and SB216763, restored the sustained Chk1 activation and mitigated apoptosis in cells treated with etoposide and the inhibitors for aberrant kinases, PI3K, or Akt. These observations raise a possilibity that the aberrant kinases BCR/ABL, FLT3-ITD, and Jak2-V617F may prevent apoptosis induced by DNA-damaging chemotherapeutics, at least partly through enhancement of the Chk1-mediated G2/M checkpoint activation, by inactivating GSK3 through the PI3K/Akt signaling pathway. These results shed light on the molecular mechanisms for chemoresistance of hematological malignancies and provide a rationale for the combined treatment with chemotherapy and the tyrosine kinase or PI3K/Akt pathway inhibitors against these diseases.  相似文献   

5.
6.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

7.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

8.
In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR) and checkpoint kinase 1 (Chk1). Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb). Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length) and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis.  相似文献   

9.
10.
Changes in the mechanisms of folate incorporation were studied in cells treated with low concentrations of methotrexate in order to evaluate their contribution to the development of resistance to antifolate drugs. The uptake of methotrexate via reduced-folate system, the membrane-associated high-affinity folate binding capacity and the activity, levels and affinity for methotrexate of dihydrofolate reductase were measured in L5178 murine leukemic lymphoblasts and in a subline, MTX/R16, 16 times more resistant to methotrexate which was isolated after a short exposure to the antifolate. Various simultaneous changes were characterized in MTX/R16 cells which co-participated in the development of resistance: a decreased affinity of the carrier for methotrexate uptake via the reduced-folate system of entry, the increase of dihydrofolate reductase activity and levels and a two-fold increased expression of a membrane-associated high-affinity folate-binding protein (mFBP). The increase of the mFBP expression, besides ensuring the growth of resistant cells by its contribution to the reduced folate intake, also participates in the methotrexate resistance by the internalization of folate cofactor which would compete with methotrexate hindering the effective inhibition of dihydrofolate reductase by the antifolate.  相似文献   

11.
12.
Hyperthermia induced by heat stress (HS) inhibits the proliferation of cancer cells and induces their apoptosis. However, the mechanism underlying HS-induced apoptosis remains elusive. Here, we demonstrated a novel evidence that checkpoint kinase 1 (Chk1) plays crucial roles in the apoptosis and regulation of cell cycle progression in cells under HS. In human leukemia Jurkat cells, interestingly, the ataxia telangiectasia and Rad-3 related (ATR)-Chk1 pathway was preferentially activated rather than the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) pathway under HS. The selective inhibitors of ATR or Chk1 abrogated HS-induced apoptosis in human leukemia Jurkat cells whereas the inhibition of ATM or Chk2 caused only marginal effects. Inhibition of ATR and Chk1 also abrogated G2/M checkpoint activation by HS in Jurkat cells. The effects of small interfering RNA targeting Chk1 were similar to those of the selective inhibitor of Chk1. In addition, the efficiencies of Chk1 inhibition on G2/M checkpoint abrogation and apoptosis induction were confirmed in the adherent cancer cell lines HeLa, HSC3, and PC3, suggesting that the targeting of Chk1 can be effective in solid tumors cells. In conclusion, these findings indicate a novel molecular basis of G2/M checkpoint activation and apoptosis in cells exposed to HS.  相似文献   

13.
Wang WZ  Cheng J  Luo J  Zhuang SM 《FEBS letters》2008,582(18):2689-2695
In this study, we showed that curcumin treatment resulted in activation of Chk1-mediated G2 checkpoint, which was associated with the induction of G2/M arrest and the resistance of cancer cells to curcumin-induced apoptosis. Further investigation revealed that inhibition of Chk1 significantly abrogated G2/M arrest and sensitized curcumin-resistant cells to apoptosis via upregulation of Bad and in turn the loss of mitochondrial membrane potential. These results indicate that Chk1-mediated G2/M arrest may serve as a mechanism for curcumin resistance and Chk1 represents a potential target for the reversal of this resistance. Our findings should be helpful for clinical application of curcumin.  相似文献   

14.
Vitamin C has inconsistent effects on malignant tumor cells, which vary from growth stimulation to apoptosis induction. It is well known that melanoma cells are more susceptible to vitamin C than any other tumor cells, but the precise mechanism remains to be elucidated. In the present study, the proliferation of B16F10 melanoma cells was suppressed by vitamin C, which induced growth arrest in a dose-dependent manner without cytotoxic effects. Therefore, we investigated the changes in cell cycle distribution of B16F10 melanoma cells by staining DNAs with propidium iodide (PI). The growth inhibition of B16F10 melanoma by vitamin C was associated with an arrest of cell cycle distribution at G1 stage. In addition, the levels of p53-p21Waf1/Cip1 increased during G1 arrest, which were essential for vitamin C-induced cell cycle arrest. The increased p21Waf1/Cip1 inhibited CDK2. Moreover, the activity of p53-p21Waf1/Cip1 pathway was closely related with the activation of checkpoint kinase 2 (Chk2). Inhibitor of the PI3K-family, LY294002 and the ATM/ATR inhibitor, caffeine, blocked vitamin C-induced growth arrest in B16F10 melanoma cells. These results suggest that vitamin C might be a potent agent to inhibit proliferative activity of melanoma cells via the regulation of Chk2-p53-p21Waf1/Cip1 pathway.  相似文献   

15.
Surgery and chemotherapy are the gold-standard treatments for ovarian cancer. The major cause of treatment failure in patients with ovarian cancer is tumoral heterogeneity and drug resistance. Paclitaxel (PTX) is one of the most commonly used first-line drugs for ovarian cancer chemotherapy. Unfortunately, the mechanisms of PTX chemoresistance remain unclear. Here, we examined the effects of post-translational neddylation on the sensitivity of ovarian cancer cells (OCCs) to PTX-induced apoptosis. Disruption of protein neddylation with the first-in-class inhibitor MLN4924 dramatically neutralized PTX-mediated antiproliferative, antimigration, and apoptotic effects in human OCCs. Moreover, MLN4924 treatment interrupted PTX-induced microtubule polymerization. Importantly, two neddylation conjugating E2 enzymes, UBE2M and UBE2F, were found to play essential roles in PTX-induced cytotoxicity and tubulin polymerization in OCCs. In summary, our findings demonstrated that disruption of protein neddylation by MLN4924 conferred resistance to PTX and provided insights into the potential mechanisms of PTX chemoresistance in ovarian cancer.  相似文献   

16.
17.
18.
Resistance of malignant melanoma cells to Fas-mediated apoptosis is among the mechanisms by which they escape immune surveillance. However, the mechanisms contributing to their resistance are not completely understood, and it is still unclear whether antiapoptotic Bcl-2-related family proteins play a role in this resistance. In this study, we report that treatment of Fas-resistant melanoma cell lines with cycloheximide, a general inhibitor of de novo protein synthesis, sensitizes them to anti-Fas monoclonal antibody (mAb)-induced apoptosis. The cycloheximide-induced sensitization to Fas-induced apoptosis is associated with a rapid down-regulation of Mcl-1 protein levels, but not that of Bcl-2 or Bcl-xL. Targeting Mcl-1 in these melanoma cell lines with specific small interfering RNA was sufficient to sensitize them to both anti-Fas mAb-induced apoptosis and activation of caspase-9. Furthermore, ectopic expression of Mcl-1 in a Fas-sensitive melanoma cell line rescues the cells from Fas-mediated apoptosis. Our results further show that the expression of Mcl-1 in melanoma cells is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and not by phosphatidylinositol 3-kinase/AKT signaling pathway. Inhibition of ERK signaling with the mitogen-activated protein/ERK kinase-1 inhibitor or by expressing a dominant negative form of mitogen-activated protein/ERK kinase-1 also sensitizes resistant melanoma cells to anti-Fas mAb-induced apoptosis. Thus, our study identifies mitogen-activated protein kinase/ERK/Mcl-1 as an important survival signaling pathway in the resistance of melanoma cells to Fas-mediated apoptosis and suggests that its targeting may contribute to the elimination of melanoma tumors by the immune system.  相似文献   

19.
20.
Pancreatic cancer patients are asymptomatic at early stages and leading to late diagnoses. Additionally, pancreatic cancer easily metastasizes and is resistant to radiotherapy and chemotherapy. Therefore, it is critical to understand the underlying molecular mechanisms involved in pancreatic cancer to develop more efficient diagnostic and treatment strategies. In this study, we demonstrated that circRHOT1 was overexpressed in pancreatic cancer tissues and cell lines, and it was found to directly bind to miR‐125a‐3p, acting as an endogenous sponge to inhibit its activity. Knockdown of circRHOT1 expression significantly inhibited proliferation as well as invasion, and it promoted apoptosis of pancreatic cancer cells via the regulation of E2F3 through the targeting of miR‐125a‐3p. Taken together, our results showed that circRHOT1 plays critical roles in regulating the biological functions of pancreatic cancer cells, suggesting that circRHOT1 may serve as a potential diagnostic marker and therapeutic target for patients with pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号