首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Post-translational lipidation by prenylation of the CaaX-box C-terminal motif in eukaryotic proteins facilitates anchoring of hydrophilic proteins, such as Ras and Rab, to membranes. A large cadre of bacterial effectors injected into host cells is anchored to host membranes by unknown mechanisms. As already documented for Legionella and Salmonella, we propose a common paradigm of microbial exploitation of the host prenylation machinery for anchoring of injected effectors to host membranes. This is supported by numerous potential microbial CaaX-box-containing proteins identified using refined bioinformatic tools. We also propose utilization of the CaaX motif as a membrane-targeting tag for proteins expressed in eukaryotic cells to facilitate deciphering of biological function.  相似文献   

2.
Signals in the carboxy-terminal hypervariable region (HVR) of Rho and Ras GTPases target these proteins to specific membrane compartments, where they function in signal transduction. ROP6 and ROP7 are closely related maize Rops (a plant-specific Rho subgroup) that share HVR sequences divergent from other Rho HVRs. Both ROPs terminate in CAA, instead of the consensus C-terminal CaaX motif required for membrane association of all characterized Ras and Rho GTPases. The ROP6/7 HVR contains two additional cysteines, potential sites for post-translational modification that leads to membrane association; one is in an internal CaaX motif, which would be at the C-terminus if the final intron in both genes were not removed. Transient expression of a GFP-ROP7 fusion revealed its near-total association with the plasma membrane (PM). Furthermore, the ROP7 HVR is sufficient to target GFP to the PM. Surprisingly, the cysteine in the terminal CAA is not required for PM targeting of GFP-ROP7. In contrast, an internal HVR cysteine is essential for proper targeting of the fusion, and the cysteine in the internal CaaX is required for complete membrane association. Interestingly, this CaaX motif can also direct PM association when placed at the fusion C-terminus by addition of an internal stop codon. Fractionation experiments confirm that maize ROPs associate with membranes in maize seedlings. Our analysis suggests that the ROP7 HVR directs PM localization by a mechanism independent of a C-terminal CaaX motif; this mechanism may have evolved through addition of 3' intron/exon sequences to a rop progenitor.  相似文献   

3.
C-terminal lipid modifications are essential for the interaction of Ras-related proteins with membranes. While all Ras proteins are farnesylated and some palmitoylated, the majority of other Ras-related proteins are geranylgeranylated. One such protein, Rab6, is associated with the Golgi apparatus and has a C-terminal CXC motif that is geranylgeranylated on both cysteines. We show here that farnesylation alone cannot substitute for geranylgeranylation in targeting Rab6 to the Golgi apparatus and that whereas Ras proteins that are farnesylated and palmitoylated are targeted to the plasma membrane, mutant Rab proteins that are both farnesylated and palmitoylated associate with the Golgi apparatus. Using chimeric Ras-Rab proteins, we find that there are sequences in the N-terminal 71 amino acids of Rab6 which are required for Golgi complex localization and show that these sequences comprise or include the effector domain. The C-terminal hypervariable domain is not essential for the Golgi complex targeting of Rab6 but is required to prevent prenylated and palmitoylated Rab6 from localizing to the plasma membrane. Functional analysis of these mutant Rab6 proteins in Saccharomyces cerevisiae shows that wild-type Rab6 and C-terminal mutant Rab6 proteins which localize to the Golgi apparatus in mammalian cells can complement the temperature-sensitive phenotype of ypt6 null mutants. Interestingly, therefore, the C-terminal hypervariable domain of Rab6 is not required for this protein to function in S. cerevisiae.  相似文献   

4.
D Holtz  R A Tanaka  J Hartwig  F McKeon 《Cell》1989,59(6):969-977
While the nuclear lamin proteins (A, B, and C) assemble specifically at the surface of the nuclear membrane, their sequences do not reveal stretches of hydrophobic amino acids that might explain their association with the nuclear membranes. However, the A and B lamin proteins possess Ras-like C-terminal CaaX sequence motifs, which in Ras proteins are sites of hydrophobic modifications required for membrane association and function. From the analysis of single and double lamin A mutants affecting the CaaX motif, the nuclear localization signal, and higher-order assembly properties, we propose that the CaaX motif functions as a nonspecific, low affinity membrane probe for proteins ultimately segregated to specific cellular membrane systems. Committed association with specific membranes requires additional interactions with membrane-resident factors.  相似文献   

5.
The Saccharomyces cerevisiae YDJ1 protein (YDJ1p) contains a C-terminal "CaaX box" motif common to proteins that are modified by prenylation. In the present study we show that YDJ1p is a specific substrate for both yeast and mammalian protein farnesyltransferase enzymes in vitro. A mutant form of YDJ1p, in which the conserved cysteine of the CaaX box is mutated to a serine (ydj1-S406p), cannot be farnesylated in vitro. After expression in S. cerevisiae, ydj1-S406p displays a reduced electrophoretic mobility and an increased cytosolic localization in subcellular fractionation experiments when compared to wild type YDJ1p. Expression of ydj1-S406 in cells lacking YDJ1 results in a temperature-sensitive growth phenotype in S. cerevisiae. These data indicate that farnesylation of YDJ1p is required for its function at elevated temperatures.  相似文献   

6.
Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity.  相似文献   

7.
Two protein prenyltransferase enzymes, farnesyltransferase (FTase) and geranylgeranyltransferase-I (GGTase-I), catalyze the covalent attachment of a farnesyl or geranylgeranyl lipid group to the cysteine of a CaaX sequence (cysteine [C], two aliphatic amino acids [aa], and any amino acid [X]. In vitro studies reported here confirm previous reports that CaaX proteins with a C-terminal serine are farnesylated by FTase and those with a C-terminal leucine are geranylgeranylated by GGTase-I. In addition, we found that FTase can farnesylate CaaX proteins with a C-terminal leucine and can transfer a geranylgeranyl group to some CaaX proteins. Genetic data indicate that FTase and GGTase-I have the same substrate preferences in vivo as in vitro and also show that each enzyme can prenylate some of the preferred substrates of the other enzyme in vivo. Specifically, the viability of yeast cells lacking FTase is due to prenylation of Ras proteins by GGTase-I. Although this GGTase-I dependent prenylation of Ras is sufficient for growth, it is not sufficient for mutationally activated Ras proteins to exert deleterious effects on growth. The dependence of the activated Ras phenotype on FTase can be bypassed by replacing the C-terminal serine with leucine. This altered form of Ras appears to be prenylated by both GGTase-I and FTase, since it produces an activated phenotype in a strain lacking either FTase or GGTase-I. Yeast cells can grow in the absence of GGTase-I as long as two essential substrates are overexpressed, but their growth is slow. Such strains are dependent on FTase for viability and are able to grow faster when FTase is overproduced, suggesting that FTase can prenylate the essential substrates of GGTase-I when they are overproduced.  相似文献   

8.
Rab5 is a Ras-related GTP-binding protein that is post-translationally modified by prenylation. We report here that an N-terminal domain contained within the first 22 amino acids of Rab5 is critical for efficient geranylgeranylation of the protein's C-terminal cysteines. This domain is immediately upstream from the "phosphate binding loop" common to all GTP-binding proteins and contains a highly conserved sequence recognized among members of the Rab family, referred to here as the YXYLFK motif. A truncation mutant that lacks this domain (Rab5(23-215) fails to become prenylated. However, a chimeric peptide with the conserved motif replacing cognate Rab5 sequence (MAYDYLFKRab5(23-215) does become post-translationally modified, demonstrating that the presence of this simple six amino acid N-terminal element enables prenylation at Rab5's C-terminus. H-Ras/Rab5 chimeras that include the conserved YXYLFK motif at the N-terminus do not become prenylated, indicating that, while this element may be necessary for prenylation of Rab proteins, it alone is not sufficient to confer properties to a heterologous protein to enable substrate recognition by the Rab geranylgeranyl transferase. Deletion analysis and studies of point mutants further reveal that the lysine residue of the YXYLFK motif is an absolute requirement to enable geranylgeranylation of Rab proteins. Functional studies support the idea that this domain is not required for guanine nucleotide binding since prenylation-defective mutants still bind GDP and are protected from protease digestion in the presence of GTP gamma S. We conclude that the mechanism of Rab geranylgeranylation involves key elements of the protein's tertiary structure including a conserved N-terminal amino acid motif (YXYLFK) that incorporates a critical lysine residue.  相似文献   

9.
Recent evidence suggests that the conserved COOH-terminal CaaX motif of nuclear lamins may play a role in targeting newly synthesized proteins to the nuclear envelope. We have shown previously that in rabbit reticulocyte lysates the cysteine residue of the CaaX motif of chicken lamin B2 is necessary for incorporation of a derivative of mevalonic acid, the precursor of isoprenoids. Here we have analyzed the properties of normal and mutated forms of chicken lamin B2 stably expressed in mouse L cells. Mutation of the cysteine residue of the CaaX motif to alanine or introduction of a stop codon immediately after the cysteine residue was found to abolish both isoprenylation and carboxyl methylation of transfected lamin B2. Concomitantly, although nuclear import of the mutant lamin B2 proteins was preserved, their association with the inner nuclear membrane was severely impaired. From these results we conclude that the COOH-terminal CaaX motif is required for isoprenylation and carboxyl methylation of lamins in vivo, and that these modifications are important for association of B-type lamins with the nucleoplasmic surface of the inner nuclear membrane.  相似文献   

10.
The Rab11-FIP/Rip/RCP proteins are a recently described novel protein family, whose members interact with Rab GTPases that function in endosomal recycling. To date, five such proteins have been described in humans, all of which interact with Rab11, and one (RCP) also interacts with Rab4. Here, we characterise several of these proteins with respect to their ability to interact with Rab4, as well as their ability to self-interact, and to interact with each other. We now demonstrate that two of the family members-pp75/Rip11 and Rab11-FIP3 do not bind Rab4 and show that several members of the family can self-interact and interact with each other. These interactions primarily involve their C-terminal end which includes the Rab binding domain (RBD) that is contained within a predicted coiled-coil, or ERM motif. We identify a new (sixth) member of the protein family, which we propose to name Rab11-FIP4, and report the family evolutionary complexity and chromosomal distribution. Furthermore, we propose that the ability of these proteins to bind each other will be important in effecting membrane trafficking events by forming protein 'platforms,' regulated by Rab11 and/or Rab4 activity.  相似文献   

11.
Post-translational modification by protein prenylation is required for membrane targeting and biological function of monomeric GTPases. Ras and Rho proteins possess a C-terminal CAAX motif (C is cysteine, A is usually an aliphatic residue, and X is any amino acid), in which the cysteine is prenylated, followed by proteolytic cleavage of the AAX peptide and carboxyl methylation by the Rce1 CAAX protease and Icmt methyltransferase, respectively. Rab GTPases usually undergo double geranylgeranylation within CC or CXC motifs. However, very little is known about processing and membrane targeting of Rabs that naturally contain a CAAX motif. We show here that a variety of Rab-CAAX proteins undergo carboxyl methylation, both in vitro and in vivo, with one exception. Rab38(CAKS) is not methylated in vivo, presumably because of the inhibitory action of the lysine residue within the AAX motif for cleavage by Rce1. Unlike farnesylated Ras proteins, we observed no targeting defects of overexpressed Rab-CAAX proteins in cells deficient in Rce1 or Icmt, as reported for geranylgeranylated Rho proteins. However, endogenous geranylgeranylated non-methylated Rab-CAAX and Rab-CXC proteins were significantly redistributed to the cytosol at steady-state levels and redistribution correlates with higher affinity of RabGDI for non-methylated Rabs in Icmt-deficient cells. Our data suggest a role for methylation in Rab function by regulating the cycle of Rab membrane recruitment and retrieval. Our findings also imply that those Rabs that undergo post-prenylation processing follow an indirect targeting pathway requiring initial endoplasmic reticulum membrane association prior to specific organelle targeting.  相似文献   

12.
The regulation of membrane traffic involves the Rab family of Ras-related GTPases, of which there are a total of 11 members in the yeast Saccharomyces cerevisiae. Previous work has identified PRA1 as a dual prenylated Rab GTPase and VAMP2 interacting protein [Martinic et al. (1999) J. Biol. Chem. 272, 26991-26998]. In this study we demonstrate that the yeast counterpart of PRA1 interacts with Rab proteins and with Yip1p, a membrane protein of unknown function that has been reported to interact specifically with the Rab proteins Ypt1p and Ypt31p. Yeast Pra1p/Yip3p is a factor capable of biochemical interaction with a panel of different Rab proteins and does not show in vitro specificity for any particular Rab. The interactions between Pra1p/Yip3p and Rab proteins are dependent on the presence of the Rab protein C-terminal cysteines and require C-terminal prenylation.  相似文献   

13.
T Haizel  T Merkle  F Turck    F Nagy 《Plant physiology》1995,108(1):59-67
We have cloned nine cDNAs encoding small GTP-binding proteins from leaf cDNA libraries of tobacco (Nicotiana tabacum). These cDNAs encode distinct proteins (22-25 kD) that display different levels of identity with members of the mammalian Rab family: Nt-Rab6 with Rab6 (83%), Nt-Rab7a-c with Rab7 (63-70%), and Nt-Rab11a-e with Rab11 (53-69%). Functionally important regions of these proteins, including the "effector binding" domain, the C-terminal Cys residues for membrane attachment, and the four regions involved in GTP-binding and hydrolysis, are highly conserved. Northern and western blot analyses show that these genes are expressed, although at slightly different levels, in all plant tissues examined. We demonstrate that the plant Rab5, Rab6, and Rab11 proteins, similar to their mammalian and yeast counterparts, are tightly bound to membranes and that they exhibit different solubilization characteristics. Furthermore, we show that the yeast GTPase-activating protein Gyp6, shown to be specifically required to control the GTP hydrolysis of the yeast Ypt6 protein, could interact with tobacco GTP-binding proteins. It increases in vitro the GTP hydrolysis rate of the wild-type Nt-Rab7 protein. In addition, it also increases, at different levels, the GTP hydrolysis rates of a Nt-Rab7m protein with a Rab6 effector domain and of two other chimaeric Nt-Rab6/Nt-Rab7 proteins. However, it does not interact with the wild-type Nt-Rab6 protein, which is most similar to the yeast Ypt6 protein.  相似文献   

14.
V Dring  R Stick 《The EMBO journal》1990,9(12):4073-4081
The lamin LIII gene of Xenopus laevis has been characterized. The gene is duplicated in the Xenopus genome. The transcribed region spreads over 22 kb of genomic DNA encoding 12 exons. Two alternatively spliced mRNAs are observed which encode LIII isoforms that differ only by the 12 C-terminal amino acids which, however, both contain the CaaX motif known to be the target of post-translational modifications. The intron pattern of the lamin LIII gene is strikingly similar to that of an invertebrate intermediate filament (IF) gene over the entire protein coding sequence. The similarity in gene structure is restricted to the rod domain when compared with vertebrate types I-III IF genes. Our data suggest a model of how IF proteins evolved from a lamin-like ancestor by deletion of two signal sequences; the nuclear localization signal and the C-terminal ras-related CaaX motif. The data rule out the previously proposed hypothesis that IF proteins evolved from an intronless ancestor with an early divergence of neuronal and non-neuronal IF proteins. Together with the data presented in the accompanying paper by Dodemond et al. it can be concluded that the tail domains of lamins and invertebrate IF proteins, but not those of vertebrate IF proteins, are homologous. Thus, the different vertebrate IF proteins probably evolved by combination of the central rod domain with different tail domains by exon shuffling.  相似文献   

15.
Wei J  Fain S  Harrison C  Feig LA  Baleja JD 《Biochemistry》2006,45(22):6826-6834
The Rab11-family interacting protein (Rab11-FIP) group of effector proteins contain a highly conserved region in their C-termini that bind the GTPase, Rab11. Rab11 belongs to the largest family of small GTPases and is believed to regulate vesicle docking with target membranes and vesicle fusion. The amino acid sequence of the Rab11-FIP proteins predicts coiled-coil formation in the conserved C-terminal domain. In this study on Rab11-FIP2, we found experimental evidence for the coiled-coil and then defined the minimal structured core using limited proteolysis. We also showed that the Rab11-FIP2 coiled-coil domain forms a parallel homodimer in solution using cross-linking and mutagenesis and sedimentation equilibrium experiments. Various constructs representing the C-terminal domain of Rab11-FIP2 were characterized by circular dichroism, and their affinity with Rab11 was measured using isothermal titration calorimetry. The longest construct was both well-structured and bound Rab11. A construct truncated at the N-terminus was poorly structured but retained the same affinity for binding to Rab11. Conformational changes were also demonstrated upon complex formation between Rab11 and Rab11-FIP2. A construct truncated at the C-terminus, which was the minimal coiled-coil domain defined by limited proteolysis, did not retain the ability to interact with Rab11, although it was as well-structured as the longer peptide. These data show that coiled-coil formation and Rab11 binding are separable functions of the C-terminal domain of Rab11-FIP2. The dissection of Rab11 binding from the formation of defined structure in a coiled-coil provides a potential mechanism for regulating Rab11-dependent endosomal trafficking.  相似文献   

16.
The Rab11 GTPase regulates recycling of internalized plasma membrane receptors and is essential for completion of cytokinesis. A family of Rab11 interacting proteins (FIPs) that conserve a C-terminal Rab-binding domain (RBD) selectively recognize the active form of Rab11. Normal completion of cytokinesis requires a complex between Rab11 and FIP3. Here, we report the crystal structure and mutational analysis of a heterotetrameric complex between constitutively active Rab11 and a FIP3 construct that includes the RBD. Two Rab11 molecules bind to dyad symmetric sites at the C terminus of FIP3, which forms a non-canonical coiled-coiled dimer with a flared C terminus and hook region. The RBD overlaps with the coiled coil and extends through the C-terminal hook. Although FIP3 engages the switch and interswitch regions of Rab11, the mode of interaction differs significantly from that of other Rab-effector complexes. In particular, the switch II region undergoes a large structural rearrangement from an ordered but non-complementary active conformation to a remodeled conformation that facilitates the interaction with FIP3. Finally, we provide evidence that FIP3 can form homo-oligomers in cells, and that a critical determinant of Rab11 binding in vitro is necessary for FIP3 recruitment to recycling endosomes during cytokinesis.  相似文献   

17.
Rab11, a low molecular weight GTP-binding protein, has been shown to play a key role in a variety of cellular processes, including endosomal recycling, phagocytosis, and transport of secretory proteins from the trans-Golgi network. In this study we have described a novel Rab11 effector, EF-hands-containing Rab11-interacting protein (Eferin). In addition, we have identified a 20-amino acid domain that is present at the C terminus of Eferin and other Rab11/25-interacting proteins, such as Rip11 and nRip11. Using biochemical techniques we have demonstrated that this domain is necessary and sufficient for Rab11 binding in vitro and that it is required for localization of Rab11 effector proteins in vivo. The data suggest that various Rab effectors compete with each other for binding to Rab11/25 possibly accounting for the diversity of Rab11 functions.  相似文献   

18.
Paralemmin is a protein implicated in plasma membrane dynamics. Here we describe the identification of two new paralemmin-related proteins. A partial paralemmin homolog, palmdelphin, is predominantly cytosolic, unlike paralemmin which is lipid-anchored to the plasma membrane through a C-terminal CaaX motif. We have mapped the mouse palmdelphin gene to distal chromosome 3 between Amy2 and Abcd3, in a region homologous to human chromosome 1p22-p21 where the human palmdelphin gene is located. We have also identified a second paralemmin isoform, paralemmin-2. It is expressed from a gene on human chromosome 9q31-q33 which ends only 33 kb upstream of the gene encoding the protein kinase A-binding protein,AKAP2/AKAP-KL. The closely adjacent paralemmin-2 and AKAP2 genes are functionally linked in a very unusual manner. Chimeric mRNAs are expressed, apparently by RNA readthrough and differential splicing, that encode natural fusion proteins in which either the N-terminal coiled-coil region or nearly the complete sequence of paralemmin-2 except its C-terminal CaaX motif is fused to AKAP2/AKAP-KL. The N-terminal coiled-coil region is conserved in paralemmin-1, paralemmin-2/AKAP2, palmdelphin and a fourth, uncharacterized gene, suggesting that it is a modular functional domain.  相似文献   

19.
gamma-Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (gamma-SNAP) is capable of stabilizing a 20 S complex consisting of NSF, alpha-SNAP, and SNAP receptors (SNAREs), but its function in vesicular transport is not fully understood. Our two-hybrid analysis revealed that gamma-SNAP, unlike alpha-SNAP, interacts directly with NSF, as well as Gaf-1/Rip11, but not with SNAREs. Gaf-1/Rip11 is a gamma-SNAP-associated factor that belongs to the Rab11-interacting protein family. To gain insight into the molecular basis for the interactions of gamma-SNAP with NSF and Gaf-1/Rip11, we determined the regions of the three proteins involved in protein-protein interactions. gamma-SNAP bound to NSF via its extreme C-terminal region, and the full-length NSF was needed to interact with gamma-SNAP. Both the N-terminal and C-terminal regions of gamma-SNAP were required for the binding to Gaf-1/Rip11. Gaf-1/Rip11 bound to gamma-SNAP via its C-terminal domain comprising a putative coiled-coil region. Although the C-terminal domain of Gaf-1/Rip11 also interacts with Rab11, the binding of gamma-SNAP and Rab11 to Gaf-1/Rip11 was not mutually exclusive. Rather, Gaf-1/Rip11 was capable of serving a link between gamma-SNAP and Rab11. A complex comprising gamma-SNAP and Gaf-1/Rip11 was disassembled in a process coupled to NSF-mediated ATP hydrolysis, suggesting that the interaction between gamma-SNAP and Gaf-1/Rip11 is of functional significance.  相似文献   

20.
Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed. In this study, we evaluated processing of a-factor variants with all possible single amino acid substitutions at either the a(1), the a(2), or the X position of the a-factor Ca(1)a(2)X sequence, CVIA. The substrate specificity of the two known yeast CaaX proteases, Afc1p and Rce1p, was investigated in vivo. Both Afc1p and Rce1p were able to proteolyze a-factor with A, V, L, I, C, or M at the a(1) position, V, L, I, C, or M at the a(2) position, or any amino acid at the X position that was acceptable for prenylation of the cysteine. Eight additional a-factor variants with a(1) substitutions were proteolyzed by Rce1p but not by Afc1p. In contrast, Afc1p was able to proteolyze additional a-factor variants that Rce1p may not be able to proteolyze. In vitro assays indicated that farnesylation was compromised or undetectable for 11 a-factor variants that produced no detectable halo in the wild-type AFC1 RCE1 strain. The isolation of mutations in RCE1 that improved proteolysis of a-factor-CAMQ, indicated that amino acid substitutions E139K, F189L, and Q201R in Rce1p affected its substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号