首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

4.
In sections from hypocotyls of dark-grown mung-bean (Vigna radiata L.) seedlings, D-phenylalanine and D-methionine (D-met) inhibited the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid from exogenously administered 1-aminocyclopropane-1-carboxylic acid (ACC), resulting in an increase in free ACC content and stimulation of ethylene production, whereas their L-enantiomers had little or no such effect. When the hypocotyls were administered D-Met, it was mainly metabolized to N-malonylmethionine and N-malonylmethionine sulfoxide, and this malonylation process was inhibited to a greater extent by ACC and D-amino acids (phenylalanine and serine) than by L-amino acids. These results indicate that malonylation of D-amino acids and of ACC are intimately interrelated.  相似文献   

5.
6.
Buffered solutions are used commonly to introduce chemical inhibitors and promoters of ethylene synthesis into plant tissues. Vacuum infiltration of preclimacteric muskmelon (Cucumis melo L.) fruit tissue with a buffer (50 mM MES, pH 6.1) immediately after excision inhibited the wound-induced increase in ethylene production, but it did not suppress the accumulation of 1-aminocyclopropane-l-carboxylic acid (ACC) during the 48 h following injury. The inhibition of ethylene production by infiltration was not reversed by treatment with ACC. If the injured tissue was allowed to age for 3 h before treatment, wound-induced ethylene production in tissue samples was not inhibited by vacuum infiltration with aqueous buffer. The results indicate that infiltration of melon fruit tissue with a liquid medium does not block the development of wound-induced ethylene production by either limiting ACC or inhibiting the ongoing conversion of ACC to ethylene. Liquid infiltration of the tissue appears to interfere with the initiation of physiological events during the first 3 h after wounding that are critical for the subsequent conversion of ACC to ethylene.  相似文献   

7.
8.
Lupin seeds treated with 1-amino-cyclopropane-1-carboxylic acid (ACC) or2-chloroethylphosphonic acid (CEPA) produced hypocotyls showing a typicalethylene growth response (reduced elongation and increased thickness), whichcould be efficiently counteracted by the presence of silver thiosulfate (STS).The fact that ACC and CEPA stimulated the ethylene produced in different zonesalong the hypocotyls suggests that these compounds, which are stored in theseeds during treatment, were transported to and along the hypocotyl. The same istrue in hypocotyls from STS-treated seeds, which indicates that stress ethyleneis induced by metal toxicity. CEPA was more effective than ACC in both producingethylene and influencing growth due to the high capacity of the hypocotyl toconjugate ACC. At the same time that CEPA inhibited hypocotyl elongation, thehypocotyl diameter increased and ethylene production exceeded the maximum valueof the control. The subsequent recovery of hypocotyl elongation coincided with adecrease in ethylene production and involved cell elongation. The final celllength was similar (in ACC-) or higher (in CEPA-treated plants) than in thecontrol, although the hypocotyls were shorter in both cases, while the number ofcells per column was reduced to half that observed in the control. Thisinhibition of cell division caused by ethylene was selective since the number ofcell layers did not change. The variations in cell diameter in the epidermisand, especially, in the cortex and pith were correlated with the variations inhypocotyl diameter produced by ACC, CEPA and STS. The results show that theethylene-induced hypocotyl thickening was irreversible and mainly due to anincrease in cell diameter, while the inhibition of hypocotyl elongation wasreversible and involved irreversible inhibition of cell division and,paradoxically, stimulation of cell elongation to produce cells longer than thoseof the control.  相似文献   

9.
The subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), an enzyme involved in the biosynthesis of ethylene, has been studied in ripening fruits of tomato (Lycopersicum esculentum Mill.). Two types of antibody have been raised against (i) a synthetic peptide derived from the reconstructed pTOM13 clone (pRC13), a tomato cDNA encoding ACC oxidase, and considered as a suitable epitope by secondary-structure predictions; and (ii) a fusion protein overproduced in Escherichia coli expressing the pRC13 cDNA. Immunoblot analysis showed that, when purified by antigen affinity chromatography, both types of antibody recognized a single band corresponding to ACC oxidase. Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus × domestica Borkh.) fruit. The apoplasmic location of the enzyme was also demonstrated by the observation of immunogold-labeled antibodies in this region by both optical and electron microscopy. Transgenic tomato fruits in which ACC-oxidase gene expression was inhibited by an antisense gene exhibited a considerable reduction of labeling. Immunocytological controls made with pre-immune serum or with antibodies pre-absorbed on their corresponding antigens gave no staining. The discrepancy between these findings and the targeting of the protein predicted from sequences of ACC-oxidase cDNA clones isolated so far is discussed.  相似文献   

10.
11.
12.
Immunochemical cross-reactivity of wound- and auxin-induced1-aminocyclopropane-1-carboxylate (ACC) synthase was examinedwith the antibody against wound-induced ACC synthase purifiedfrom mesocarp of winter squash (Cucurbita maxima Duch.). Theantibody recognized ACC synthase from wounded hypocotyls ofwinter squash and from wounded pericarp of tomato fruits, butnot the enzyme from IAA-treated hypocotyls of winter squash,tomato and mung bean. These results indicate that the primarystructure of the wound-induced enzyme is different from thatof the auxin-induced enzyme in the same species, and impliesthat there are two different genes for ACC synthase, one forwound induction and the other for auxin induction. (Received June 14, 1988; Accepted July 20, 1988)  相似文献   

13.
14.
Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.  相似文献   

15.
Purified malformin A1 (cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-lle), a cyclicpentapeptide toxin fromAspergillus niger, was applied to the hypocotyl segments of mung bean (Vigna radiata L.) seedlings to investigate its role in regulating ethylene biosynthesis. Production of ethylene was induced by treating the plants with 0.1 mM indole-3-acetic acid (1AA). When 0.1 μM malformin A1 was then applied, ethylene production increased and the activities of two key enzymes for its biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase (ACS) and ACC-oxidase (ACO), were also stimulated. However, at levels of 1 or 10 μM malformin A1, both ethylene production and enzymatic activities were significantly reduced. In the case of ACO,in vitro activity was regulated by malformin A1, independent of ACS activity or the influence of IAA. Furthermore, the conjugate form of ACC, N-malonyl ACC, was significantly promoted by treatment with 0.1 μM malformin A1. These data suggest that malformin A1 can modulate ethylene production through diverse paths and that its effect depends on the concentration of the treatment administered.  相似文献   

16.
17.
18.
At a concentration of 17 µmol·L–1, paclobutrazol (PP), a triazole plant growth retardant, effectively reduced the elongation and increased the thickness of hypocotyls in 6-day-old Phaseolus vulgaris L. cv. Juliska seedlings, both in the light and in the dark. PP treatment did not increase the cell number in transverse sections of hypocotyls. The diameter of hypocotyls was uniform from the zone of intensive elongation along the whole hypocotyl in etiolated plants, but those grown in the light exhibited an additional lateral expansion at the base. Ethylene evolution was not reduced by PP in etiolated hypocotyls, and did not differ significantly in the elongating apical and fully grown basal zones. PP reduced the ethylene release by the growing zones in green hypocotyls, but not in the basal parts, which resulted in an increasing ethylene gradient towards the hypocotyl base. The level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was much higher in retardant-treated hypocotyls than in the controls, which was due in part to the reduced malonylation. The swelling of the hypocotyl bases could be eliminated by inhibitors of ethylene biosynthesis or action, or could be induced by 10 µmol·L–1ACC in control plants in the light. None of these treatments had a significant effect on the lateral expansion of hypocotyls in etiolated seedlings. PP treatment induced a similar effect to that of white light in etiolated seedlings, and amplified the effect of light in green plants with respect to the ACC distribution, and consequently, the ethylene production in the hypocotyls of 6-day-old bean seedlings. It can be concluded that the lateral expansion of hypocotyl bases in PP-treated green plants is controlled by ethylene.  相似文献   

19.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

20.
Salicylic acid (SA), a common plant phenolic compound, influences diverse physiological and biochemical processes in plants. To gain insight into the mode of interaction between auxin, ethylene, and SA, the effect of SA on auxininduced ethylene production in mung bean hypocotyls was investigated. Auxin markedly induced ethylene production, while SA inhibited the auxin-induced ethylene synthesis in a dose-dependent manner. At 1 mM of SA, auxininduced ethylene production decreased more than 60% in hypocotyls. Results showed that the accumulation of ACC was not affected by SA during the entire period of auxin treatment, indicating that the inhibition of auxin-induced ethylene production by SA was not due to the decrease in ACC synthase activity, the rate-limiting step for ethylene biosynthesis. By contrast, SA effectively reduced not only the basal level of ACC oxidase activity but also the wound-and ethylene-induced ACC oxidase activity, the last step of ethylene production, in a dose-dependent manner. Northern and immuno blot analyses indicate that SA does not exert any inhibitory effect on the ACC oxidase gene expression, whereas it effectively inhibits both the in vivo and in vitro ACC oxidase enzyme activity, thereby abolishing auxin-induced ethylene production in mung bean hypocotyl tissue. It appears that SA inhibits ACC oxidase enzyme activity through the reversible interaction with Fe2+, an essential cofactor of this enzyme. These results are consistent with the notion that ethylene production is controlled by an intimate regulatory interaction between auxin and SA in mung bean hypocotyl tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号