首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. Submerged macrophytes have important physical and structural effects on lowland streams. This study investigated the ability of submerged macrophytes to modify the near-bed flow and to retain mineral and organic particles in patches of four common macrophytes in shallow Danish streams during mid-summer. 2. In dense patches of Callitriche cophocarpa and Elodea canadensis, where near-bed velocity was reduced, the sediment surface was markedly raised and enriched with fine particles. In dense patches of Ranunculus peltatus, fine sediments were deposited among rooted shoots in the upstream part of the patches, while erosion and coarse sediments prevailed in the downstream part of the patches because of the strong vortices that formed at the rear and moved up under the trailing canopy. The open canopy of Sparganium emersum, with its streamlined leaves, had little effect on flow and sediment. 3. Patterns of sediment deposition and composition were closely related to the morphology and canopy structure of plant species and the presence of low velocity above the sediment among the rooted shoots. The mineral particles retained probably originate from bed-load, and the enrichment with finer particles within the patches probably results mainly from size-selective processes during erosion and transport of particles rather than during deposition. The mixed sediment composition within patches suggests that the flow-resistant shoots generate an environment conducive to deposition of all transported particles. 4. Fine sediments within macrophyte beds contained high concentrations of organic matter, carbon, nitrogen and phosphorus. The wide scatter in the relationships between mineral grain size and the content of organic matter and nutrients reflects the spatial and temporal complexity of erosion, transport and sedimentation of mineral and organic particles. 5. Enrichment of sediment within macrophyte beds relative to the surrounding substratum ranged from 780 g organic matter m–2, 30 g N m–2 and 25 g P m–2 for the flow-resistant dense canopies af Callitriche cophocarpa to 150 g organic matter m–2, 6.6 g N m–2 and 3.4 g P m–2 for the open canopies of Sparganium emersum. Retention of nutrient-rich particles within the macrophyte beds is probably of limited importance for plant growth in most lowland European streams, because macrophyte growth is rarely nutrient limited.  相似文献   

2.
Introduced submerged macrophytes have come to dominate many shallow water bodies in New Zealand, and are a common component of many lowland streams. We investigated the seasonal variation of macrophyte abundance, its influence on flow and channel volume, and the implications of this on stream habitat and functioning in Whakapipi Stream, a typical lowland stream draining a predominantly agricultural catchment.Abundance of macrophytes over the summer was primarily controlled by the phenological cycles of the two dominant species. Mean minimum total macrophyte biomass (36 g m–2) and cover (7%) occurred in winter (June and August, respectively), and mean maximum biomass (324 g m–2), and cover (79%) occurred in late summer (March and February respectively). Egeria densa comprised the majority of both cover and biomass during the study period, except early summer (December) when Potamogeton crispus was prevalent in the shallow stream reaches.Macrophyte beds had a major impact on summer stream velocities, reducing average velocities by an estimated 41%. Stream cross-sectional area was maintained at relatively stable levels similar to that recorded over winter, when stream discharge was in the order of seven times greater. The mean velocity distribution coefficient (), and Manning's roughness coefficient (n) were dependent on and displayed a positive linear relationship with macrophyte abundance. The velocity distribution coefficient is recommended as a better indicator of macrophyte effects on velocity in natural streams, as it does not assume uniform velocity, channel depth and slope within the stream reach.Our study shows that submerged macrophytes play an important structuring role within the stream during the summer period, where macrophyte beds act as semi-permeable dams, retarding flow velocities and increasing stream depth and cross-sectional area. This promotes habitat heterogeneity by creating a greater range of flow velocity variation, and also provides large stable low-flow areas. Other likely ecosystem effects resulting from macrophyte/velocity interactions include increased sedimentation, potential for nutrient processing and increased primary production, both by macrophytes and attached epiphyton. The complex architecture of submerged macrophytes and their influence on stream flow may also provide an increased diversity of habitat for other aquatic biota. We propose that management of degraded lowland streams such as the Whakapipi Stream to maintain stretches with moderate quantities of submerged macrophytes interspersed with shaded areas would optimise stream health during low summer flows.  相似文献   

3.
In lowland areas, such as the glacial landscapes of eastern Germany, sand‐bed streams are the most common stream type. They have low gradients and their hydrological regime is often subdued due to the frequent interruption by lakes. Very few is known about the influence of woody debris in these streams, since nearly all previous studies are from high‐gradient conditions, where streams have coarse bed sediments and harsh hydrological regimes. The research objectives of this study were first to assess the quasi‐natural quantity and quality of wood in a lowland sand‐bed stream and second to understand the influence of wood on the channel morphology and the flow patterns at base‐flow. The three‐dimensional stream bed relief was surveyed by electronic distance measurement. The position and the size of large woody debris was assessed by close‐up photography. An acoustic Doppler velocimeter was used to record the patterns of flow velocity and turbulence. Overlay and analysis of the spatial data was done using a Geographic Information System. The standing stock of wood was 1.9 m3 and 39 woody elements per 100 m2 of stream bed. The flow pattern was clearly controlled by the wood. Woody elements elevated above the stream bed deflected flow and locally caused strong secondary current, high turbulence, and scour of the stream bed at baseflow. Wood resting directly on the stream bed, which contributed the majority of the wood inside the bank‐full channel, determined the roughness of the stream bed. Near‐bed flow patterns observed were isolated roughness flow and wake interference flow, which was registered inside the accumulations of wood. 68% of the stream bed had shear stress above critical. Hence, the secondary morphological structures of the sand‐bed were controlled at base‐flow by the flow which was determined by the woody debris distribution.  相似文献   

4.
Macrophytes influence the physical, chemical, and biological characteristics of lowland streams, so may be critically important in stream management. We investigated the role of macrophytes in regulating metabolism and nutrient cycling in three lowland, agricultural streams. We measured stream metabolism over the growing season and following experimental macrophyte removal, and used short-term nutrient additions of phosphate (P) and ammonium to assess macrophyte influences on nutrient uptake. Primary production was closely correlated with macrophyte cover across all streams and dates, and decreased greatly with macrophyte removal, whereas ecosystem respiration was not correlated with macrophyte cover and was not altered by macrophyte removal. Phosphate uptake velocity was negatively related to primary production, suggesting that macrophyte activity actually slowed P uptake. Ammonium uptake was not correlated with macrophyte cover or metabolism metrics. Stream nitrate concentrations typically exceeded concentrations of incoming groundwater, suggesting little net nitrate retention in these macrophyte-dominated streams. Phosphorous demand by macrophytes was 10-fold lower than observed uptake rates, indicating that macrophyte P demand was much lower than that of other stream biota. Nitrogen demand by macrophytes was nearly equal to ammonium uptake and was not sufficient to affect the high nitrate flux. These results indicate that macrophytes drive ecosystem metabolism but have limited influence on water column nutrient concentrations because macrophyte demand is much lower than the supply available from the water column. Thus macrophytes in our streams had a large impact on stream trophic state, but offered little potential to influence nutrient removal via management.  相似文献   

5.
Abundant growths of macrophytes are a common feature of streams in open lowland areas of New Zealand during summer, but the values of these to aquatic biota are poorly understood. We studied the temporal dynamics of, and associations amongst, elements of a macrophyte-invertebrate system to provide an improved information base for lowland stream management. The biomass of macrophytes increased significantly over the four quarterly sampling occasions from 43.8 g m-2 in June to 370.8 g m-2 in March; biomass was dominated by Egeria densa on all dates, except in December when Potamogeton crispus was dominant. We did not detect strong associations between epiphyton biomass and invertebrate abundance in our study, but this may reflect the fact that we sampled loosely-adhering epiphyton on young, surface-reaching shoots whereas invertebrates were collected from macrophytes growing through the water column. Density of some invertebrate species per gram dry weight of plant material varied by macrophyte type, with the chironomids Tanytarsus vespertinus and Naonella forsythi displaying positive correlations with Egeria and Potamogeton biomass, respectively. The shrimp Paratya curvirostris accounted for 50% of phytophilous invertebrate biomass, with Chironomidae the only other group to comprise more than 9%. Abundance of total phytophilous invertebrates displayed a positive linear relationship with macrophyte biomass in a sample (0.1 m2), and a humped relationship with species richness, such that highest numbers of taxa occurred at macrophyte biomass levels around 400 g dw m-2. Our study suggests that intermediate macrophyte biomass levels are likely to enhance macroinvertebrate biodiversity in sandy-bottomed lowland streams. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
1. The objective of the present study was to examine how the physical stream environment in regulated and unregulated lowland streams affects the diversity and distribution of macrophyte communities. We analysed the abundance, distribution and composition of macrophytes, together with physical parameters, in seven regulated and seven unregulated unshaded Danish stream reaches. 2. Total macrophyte coverage was similar in the regulated and unregulated streams, but species richness and Shannon diversity were higher in the unregulated streams. Overall, we found fifty-two different species in the regulated stream reaches and sixty-two in the unregulated stream reaches. The spatial distribution of macrophytes on the stream bottom was more heterogeneous in the unregulated streams. 3. We found positive correlations between the coverage and diversity of macrophytes and the coverage of coarse-textured substratum types on the stream bottom, as well as between macrophyte coverage and diversity and substratum heterogeneity. We also found that the macrophytes were more heterogeneously distributed where substratum heterogeneity was greater. 4. The species growing both submerged and emergent were more abundant in the regulated streams, whereas species growing only submerged were more abundant in the unregulated streams. Species growing submerged, species growing both submerged and emergent, and species only growing emergent segregated differently in a canonical correspondence analysis ordination. The submerged species were primarily associated with coarser-textured substrata, whereas species growing both submerged and emergent, and species growing only emergent were associated with finer-textured substrata. 5. The most abundant species in the regulated streams, Sparganium emersum, accounting for almost one-third of the total macrophyte coverage, was primarily associated with clay and sandy bottom substrata, whereas the most abundant species in the unregulated streams, Batrachium peltatum, was primarily associated with gravel and stony substrata.  相似文献   

7.
1. A tracer release study was conducted in a macrophyte‐rich stream, the River Lilleaa in Denmark. The objectives of the study were to compare uptake rates per unit area of by primary producers and consumers in macrophyte and non‐macrophyte habitats, estimate whole‐stream uptake rates of and compare this to other stream types, and identify the pathways and estimate the rate at which enters the food web in macrophyte and non‐macrophyte habitats. 2. Macrophyte habitats had four times higher primary uptake rates and an equal uptake rate by primary consumers per unit habitat area as compared to non‐macrophyte habitats. These rates represent the lower limit of potential macrophyte effects because the rates will be highly dependent on macrophyte bed height and mean bed height in the River Lilleaa was low compared to typical bed heights in many lowland streams. Epiphytes accounted for 30% of primary uptake in macrophyte habitats, illustrating a strong indirect effect of macrophytes as habitat for epiphytes. N flux per unit habitat area from primary uptake compartments to primary consumers was four times lower in macrophyte habitats compared to non‐macrophyte habitats, reflecting much greater biomass accrual in macrophyte habitats. Thus, we did not find higher N flux from macrophyte habitats to primary consumers compared to non‐macrophyte habitats. 3. Whole‐stream uptake rate was 447 mgN m?2 day?1. On a habitat‐weighted basis, fine benthic organic matter (FBOM) accounted for 72% of the whole‐stream uptake rate, and macrophytes and epiphytes accounted for 19 and 8%, respectively. 4. We had expected a priori relatively high whole‐stream N uptake in our study stream compared to other stream types mainly due to generally high biomass and the macrophyte’s role as habitat for autotrophic and heterotrophic organisms, but our results did not confirm this. In comparison with other release study streams, we conclude that nutrient concentration is the overall controlling factor for N uptake rates across streams, mostly as a result of high biomass of primary uptake compartments in streams with high nutrient concentrations in general and not in macrophyte streams in particular. 5. Our results indicate that macrophytes play an important role in the longer‐term retention of N and thus a decrease in net downstream transport during the growing season compared to streams without macrophytes, through direct and indirect effects on the stream reach. Direct effects are high uptake efficiency, low turnover rate (partly due to no direct feeding on macrophytes) and high longevity. An indirect effect is increased sedimentation of FBOM in macrophytes compared to non‐macrophyte habitats and streams which possibly also increase denitrification. Increased retention with macrophyte presence would decrease downstream transport during the growing season and thus the N loading on downstream ecosystems.  相似文献   

8.
The effects of aquatic macrophyte (willows and sawgrass) removal on flow velocity, tufa deposition, POM dynamics, and macroinvertebrate community structure were studied in the tufa barrier habitats of the barrage system of Plitvice Lakes, Croatia. Samples were collected from two hydraulic habitats (fast > 100 cm s−1 and slow < 100 cm s−1) at both a control (no macrophytes removed) and impact (macrophytes removed) site. Samples were collected with a core sampler (four layers in vertical profile of barrier bed) monthly on 6 dates before and 7 dates after the removal of macrophytes. Macrophytes were removed in May 2002 at the impact site. After the macrophyte removal flow velocity decreased significantly at both hydraulic habitats. Retarded flow resulted in: (a) a decrease in macroinvertebrate density and diversity since most of the taxa were rheophilic (preferring habitats with higher flow velocity) and (b) an increase in POM concentrations (FPOM and UPOM) since decreases in flow velocity facilitate particle deposition in lotic habitats. The effects of macrophyte removal were present, and diminish along the vertical sediment profile of the barrier bed. Tufa deposition was not influenced by the macrophyte removal. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

9.
Many macrophyte species in lowland streams exhibit signs of grazing and herbivore damage, even though herbivory by aquatic macroinvertebrates and fish is generally considered to be of little importance. In this study, we collected evidence for the hypothesis that herbivory on macrophytes by macroinvertebrates and fish is more widespread than assumed. We measured the dual stable isotope signatures (δ13C and δ15N) of organic matter, epiphyton, submerged macrophytes, macroinvertebrates and fish in a Belgian lowland stream. There was a clear distinction in isotopic signatures of the different basal resources, allowing the use of the SIAR mixing model. These calculations revealed the consumption of macrophyte tissue not only by the phytophagous larvae of Nymphula nitidulata Hufnagel (Lepidoptera: Crambidae), but also by Baetidae nymphs (Ephemeroptera), Orthocladiinae larvae (Diptera: Chironomidae), the crayfish Orconectus limosus Rafinesque (Decapoda: Cambaridae) and the fish Gobio gobio L. (Cypriniformes: Cyprinidae) which are classified as feeding on other resources. Although the potential share of macrophyte biomass in the diet of macroinvertebrates and fish was demonstrated to be up to 49%, this amount is only a small percentage of the total standing macrophyte biomass in a lowland stream. However, the impact of this herbivory may still be substantial because consumption may comprise a significant fraction of the daily primary production. Additionally, small-scale herbivory may still have a negative impact on macrophyte growth and survival, for example through consumption of apical meristems and the increased susceptibility to diseases and toxins if the macrophyte’s epidermis is damaged.  相似文献   

10.
1. We evaluated restoration success on macrophyte species diversity and composition in lowland streams using communities in 30 naturally meandering stream reaches in the western part of Jutland, Denmark, as reference target communities. Fuzzy set clustering was used to examine the floristic and environmental similarity among reaches, whereas fuzzy set ordination was used to relate floristic patterns to environmental variables. 2. Two major groups of streams were identified based on their floristic composition. One group consisted of reference and restored reaches and the other of the majority of channelised reaches. We found that management exerted a strong influence on the macrophyte communities and that the identified groups were related to differences in management intensity. 3. Our results also indicate that bank morphology and bed level affected macrophyte communities in the streams, particularly the richness and abundance of terrestrial species. The analyses performed suggest that shallow and wide banks allow for a larger migration of species from the stream banks into the streams, thereby enhancing species diversity within the stream channel. 4. The results of this study suggest that macrophyte communities in channelised lowland streams can recover following restorative interventions given that stream management (i.e. weed cutting and dredging) is minimised and that stream banks are reprofiled to improve the lateral connectivity between the stream and its valley.  相似文献   

11.
Low current velocities, high nutrient levels, the lack of riparian forest vegetation, and the development of dense and rich macrophyte communities characterize Pampean streams. The objective of this study was to describe the main physical, chemical, and biological characteristics of a headwater Pampean stream as well as to analyze the role of macrophytes and phytobenthos. The study was conducted in a stream considered to be not much disturbed by human activities. Samples of water and organisms (macrophytes, benthic algae and invertebrates) were taken monthly for 14 months in two sampling stations, in fast flow and slow flow sites. Macrophyte biomass and diversity increased in spring and summer, and they decreased in autumn, when the plant community was greatly affected by an important flood. Phytobenthos biomass was lower in late summer, possibly due to the establishment of a dense cover of the floating macrophyte Lemna gibba L. Density of amphipods and gastropods greatly increases in spring and summer, jointly with the macrophyte development. Analysis of correlation showed that current velocity is the most important factor influencing macrophyte biomass and phytobenthos structure, while depth, nutrients, and herbivores are linked factors. Pampean streams could be considered systems dynamically fragile, because habitat heterogeneity is generated by aquatic vegetation, a substratum that varies along time.  相似文献   

12.
Macrophytes play a key role in stream ecology and therefore efforts should be made to enable colonisation of plants to rehabilitate degraded streams. Our overall objectives in this study were first to add to the sparse published studies on the sustainability of transplanting macrophytes in-stream rehabilitation, and secondly to propose general recommendations for this purpose. We assessed the survival and growth of macrophytes after propagating and transplanting them into two streams, one of which was physically degraded and the other was a newly established stream part. We determined differences in colonisation success of different macrophyte species and of different bed sizes. Survival during propagation and after transplanting was 100% for four of the six species used in the experiment. Both survival and colonisation after transplanting six different plant species into a newly created headwater stream were high for Ranunculus baudotii × pseudofluitans, Callitriche cophocarpa, Potamogeton crispus and Myriophyllum spicatum but low for P. perfoliatus and P. pectinatus. After two years, the transplanted macrophyte species were all present and had spread along the stream. Ranunculus baudotii × pseudofluitans beds was more sustainable than C. cophocarpa at places where extensive sand transport occurred. After the second growing season, the smaller patches (0.12 m2) had both similar survival rate and size as the large patches (0.24 m2) for both R. baudotii × pseudofluitans and C. cophocarpa. Our study together with two previous ones from New Zealand enabled us to make general recommendations for transplanting macrophytes into streams. These include: (1) selecting suitable streams, (2) selecting and obtaining suitable plant species, (3) propagation technique and (4) transplanting technique.  相似文献   

13.
1. The hydrological regime is important to the distribution of benthic organisms in streams. The objective of this study was to identify relationships between hydrological variables, describing the flow regime, and macrophyte cover, species richness, diversity and community composition in Danish lowland streams.
2. We quantified macrophyte vegetation in 44 Danish streams during summer by cover, species richness and diversity. Flow regime was characterized by 18 non-intercorrelated variables describing magnitude, frequency and duration of low and high flow events, timing or predictability of flow and general flow variability.
3. We found support in the stepwise multiple regressions analysis for our expectation that macrophyte cover is lowest in streams with high flow variability and highest in streams with long duration of low flow and low flow variability. We found support for the intermediate disturbance hypothesis as there were significant quadratic relationships between species richness and diversity as functions of disturbance frequency. There was poor discrimination in a detrended correspondence analysis (DCA) analysis of macrophyte community composition between four twinspan groups separating streams with different hydrological properties. Moreover, we did not find any relationship between the presence of disturbance-tolerant species and hydrological disturbance, suggesting that plant community composition developed independently of stream hydrology.  相似文献   

14.
15.
Native macrophytes were transplanted into a small urban stream as part of a rehabilitation program, that also meandered the previously channeled stream, naturalized stream banks, and planted native riparian vegetation. Transplanted macrophytes minimized spread of introduced macrophytes and were viewed beneficially by residents, as was the stream rehabilitation. We transplanted the native macrophyte Myriophyllum triphyllum into five larger streams dominated by exotic macrophytes—some of which were weeded prior to transplanting—to see whether Myriophyllum could prevent regrowth of weeded plants. Transplanted Myriophyllum plants were washed away in two streams, reflecting high shear stresses there. Myriophyllum cover in the other streams decreased as weeded plants regrew. Our attempt at eliminating exotic macrophytes in patches in large streams was unsuccessful. Furthermore, council authorities weeded other experimental sections following complaints from residents of excess macrophyte growth. This problem highlighted conflicting multiple values placed on urban streams by managers and the public. A repeat survey of residents living near the original rehabilitated stream showed that many respondents were now critical of excessive plant growth—both in‐stream and riparian. A recurring comment made concerned the apparent lack of maintenance to the stream, giving it an untidy appearance. Difficulties with propagating and transplanting native macrophytes into larger streams, coupled with a negative perception of native vegetation (both in‐stream and riparian) if it looks unmanaged, suggest that planting macrophytes or riparian plants as part of urban stream rehabilitation programs may be more problematic than realized.  相似文献   

16.
Macrophytes are an important component of aquatic ecosystems and are used widely within the Water Framework Directive (WFD) to establish ecological quality. In the present paper we investigated macrophyte community structure, i.e., composition, richness and diversity measures in 60 unimpacted stream and river sites throughout Europe. The objectives were to describe assemblage patterns in different types of streams and to assess the variability in various structural and ecological metrics within these types to provide a basis for an evaluation of their suitability in ecological quality assessment. Macrophyte assemblage patterns varied considerably among the main stream types. Moving from small-sized, shallow mountain streams to medium-sized, lowland streams there was a clear transition in species richness, diversity and community structure. There was especially a shift from a predominance of species-poor mosses and communities dominated by liverwort in the small-sized, shallow mountain streams to more species-rich communities dominated by vascular plants in the medium-sized, lowland streams. The macrophyte communities responded to most of the features underlying the typological framework defined in WFD. The present interpretation of the WFD typology may not, however, be adequate for an evaluation of stream quality based on macrophytes. First and most important, by using this typology we may overlook an important community type, which is characteristic of small-sized, relatively steep-gradient streams that are an intermediate type between the small-sized, shallow mountain streams and the medium-sized, lowland streams. Second, the variability in most of the calculated metrics was slightly higher when using the pre-defined typology. The consistency of these results should be investigated by analysing a larger number of sites. Particularly the need of re-defining the typology to improve the ability to detect impacts on streams and rivers from macrophyte assemblage patterns should be investigated. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

17.
Submerged macrophytes grow abundantly in most shallow streams common in the cultivated lowlands of northwestern Europe. Weed-cutting has been practised for years in many of these streams to reduce the risk of flooding of adjacent land. Our objective was to quantify long-term impacts of weed-cutting on macrophyte communities in two Danish rivers. We found that the total macrophyte coverage was similar in the weed-cut and uncut reaches in the two rivers, but species richness, diversity and patch complexity were higher in the uncut reaches. The spatial distribution of macrophytes on the stream bottom was also more heterogeneous in the uncut stream reaches. We also found evidence of a strong effect of weed-cutting on macrophyte species composition. P. natans was abundant in the uncut reaches in both streams but practically eliminated in the cut reaches, despite the fact that its basic habitat requirements were met. Also, the established phase strategy of the macrophyte community was affected by weed-cutting. Species displaying characteristically ruderal traits were more abundant in the cut reaches and species with competitive abilities were only abundant in the uncut stream reaches. We suggest that important species traits in streams, where the weed is cut regularly, are associated with rapid growth and high dispersal-capacity. Our results indicate that weed-cutting can contribute significantly to a decline in species diversity in streams. To provide optimal conditions for diverse stream macrophyte communities, we therefore suggest that weed-cutting should be minimised.  相似文献   

18.
Flow velocity and turbulence patterns were measured in and around a common lotic macrophyte, Ranunculus penicillatus subspecies pseudofluitans (stream water-crowfoot), using a two-dimensional electromagnetic current meter (EMCM). Due to the high shooting density of this species, there was a sharp velocity gradient at the plant boundary, with velocities dropping to a constantly low value after no more than 5 cm into the plant, thus forcing most of the flow over and around the macrophyte. There was a dead-water zone immediately downstream of the plant, beyond which the current moved in from the sides to allow flow under the trailing shoots. High turbulence intensities were recorded for both downstream and cross-stream velocity components at the lateral margins and downstream of the plant. Meanwhile, pulses of water upstream of the plant produced turbulence in the downstream component, but not in the cross-stream component.  相似文献   

19.
Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distribution. Drag increased at a power of 1.3–1.9 with velocity and 0.59–0.77 with biomass in 75% of the measurements. Velocity and biomass interacted because higher velocity causes reconfiguration and greater internal shelter to unimpeded flow and higher biomass enhances shelter among neighbouring shoots. Increase of drag with velocity did not differ systematically among inherently streamlined or non-streamlined species while increase of drag with biomass was smallest among non-streamlined shoots which provide greater mutual shelter. At low shoot density, inherently streamlined species usually experienced the lowest drag conducive to colonisation and growth in swift flow. At high shoot density, no systematic differences in drag existed between the two morphologies. No clear relationship existed between drag forces, morphology and field distribution of species as a function of current velocity probably because a variety of environmental conditions and plant traits influences distribution. Drag on the trailing canopy usually increased 15- to 35-fold for a 100-fold increase of biomass suggesting that an even distribution of plants at low density across the stream bed offers greater resistance to downstream flow than an uneven distribution with the same biomass confined to dense patches surrounded by open flow channels. Thus, management strategies to ensure a patchy plants distribution should be suitable for combining agricultural drainage and ecological stream quality. Handling editor: S. M. Thomaz  相似文献   

20.
Efforts to limit plant growth in streams by reducing nutrients would benefit from an understanding of the relative influences of nutrients, streamflow, light, and other potentially important factors. We measured macrophytes, benthic algae, nutrients in water and sediment, discharge, and shading from 30 spring-fed or runoff-influenced streams in the upper Snake River basin, ID, USA. We hypothesized that in hydrologically stable, spring-fed streams with clear water, macrophyte and benthic algae biomass would be a function of bioavailable nutrients in water or sediments, whereas in hydrologically dynamic, runoff-influenced streams, macrophyte and benthic algae biomass would further be constrained by flow disturbance and light. These hypotheses were only partly supported. Nitrogen, both in sediment and water, was positively correlated with macrophyte biomass, as was loosely sorbed phosphorus (P) in sediment. However, P in water was not. Factors other than nutrient enrichment had the strongest influences on macrophyte species composition. Benthic algal biomass was positively correlated with loosely sorbed sediment P, lack of shade, antecedent water temperatures, and bicarbonate. These findings support the measurement of bioavailable P fractions in sediment and flow histories in streams, but caution against relying on macrophyte species composition or P in water in nutrient management strategies for macrophytes in streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号