首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Traditionally recognized as an extracellular pathogen, the Gram-positive bacterium Staphylococcus aureus can also be internalized by a variety of cell types in vitro. Internalization is known to involve binding of the host extracellular protein fibronectin to the bacterium, recognition of the fibronectin-coated bacterium by the fibronectin-binding integrin alpha5beta1 on the host cell surface, and integrin-mediated internalization. Here we examine elements of mammalian cell signalling pathways involved in S. aureus internalization. The mouse fibroblast cell line GD25, in which the gene encoding the beta1 integrin subunit is inactivated, has been complemented with a beta1 integrin cDNA encoding a tyrosine (Y) to phenylalanine (F) mutation in each of the two beta1 integrin intracellular NPXY motifs. This cell line, GD25beta1 A Y783/795F, is defective in migration on fibronectin coated surfaces and intracellular signalling activities involving the tyrosine kinase Src. GD25beta1 A Y783/795F cells have a decreased ability to internalize S. aureus compared to GD25beta1 A cells expressing wild-type beta1 integrins. Furthermore, using mouse embryo fibroblasts in which different members of the Src family kinases are genetically inactivated, we demonstrate that optimal internalization is dependent on expression of Src kinase. Interferon, which has been implicated in repression of the effects of the viral homologue of Src inhibits internalization of S. aureus indicating that internalization may be blocked by inhibitors of Src kinase function. We then demonstrate that Src family kinase specific inhibitors effectively block S. aureus internalization into HeLa cells leading to the conclusion that a function unique to Src is required for optimal internalization of S. aureus in vitro.  相似文献   

2.
Reovirus infection is initiated by interactions between the attachment protein sigma1 and cell surface carbohydrate and junctional adhesion molecule A (JAM-A). Expression of a JAM-A mutant lacking a cytoplasmic tail in nonpermissive cells conferred full susceptibility to reovirus infection, suggesting that cell surface molecules other than JAM-A mediate viral internalization following attachment. The presence of integrin-binding sequences in reovirus outer capsid protein lambda2, which serves as the structural base for sigma1, suggests that integrins mediate reovirus endocytosis. A beta1 integrin-specific antibody, but not antibodies specific for other integrin subunits, inhibited reovirus infection of HeLa cells. Expression of a beta1 integrin cDNA, along with a cDNA encoding JAM-A, in nonpermissive chicken embryo fibroblasts conferred susceptibility to reovirus infection. Infectivity of reovirus was significantly reduced in beta1-deficient mouse embryonic stem cells in comparison to isogenic cells expressing beta1. However, reovirus bound equivalently to cells that differed in levels of beta1 expression, suggesting that beta1 integrins are involved in a postattachment entry step. Concordantly, uptake of reovirus virions into beta1-deficient cells was substantially diminished in comparison to viral uptake into beta1-expressing cells. These data provide evidence that beta1 integrin facilitates reovirus internalization and suggest that viral entry occurs by interactions of reovirus virions with independent attachment and entry receptors on the cell surface.  相似文献   

3.
We have previously shown that mutation of the two tyrosines in the cytoplasmic domain of integrin subunit beta1 (Y783 and Y795) to phenylalanines markedly reduces the capability of beta1A integrins to mediate directed cell migration. In this study, beta1-dependent cell spreading was found to be delayed in GD25 cells expressing beta1A(Y783/795F) compared to that in wild-type GD25-beta1A. Focal adhesion kinase (FAK) tyrosine phosphorylation and activation were severely impaired in response to beta1-dependent adhesion in GD25-beta1A(Y783/795F) cells compared to that in wild-type GD25-beta1A or mutants in which only a single tyrosine was altered (beta1A(Y783F) or beta1A(Y795F)). Phosphorylation site-specific antibodies selective for FAK phosphotyrosine 397 indicated that the defect in FAK phosphorylation via beta1A(Y783/795F) lies at the level of the initial autophosphorylation step. Indeed, beta1A-dependent tyrosine phosphorylation of tensin and paxillin was lost in the beta1A(Y783/795F) cells, consistent with the impairment in FAK activation. In contrast, p130(CAS) overall tyrosine phosphorylation was unaffected by the beta1 mutations. Despite the defect in beta1-mediated FAK activation, FAK was still localized to focal adhesions. Taken together, the phenotype of the GD25-beta1A(Y783/795F) cells resembles, but is distinct from, the phenotype observed in FAK-null cells. These observations argue that tyrosines 783 and 795 within the cytoplasmic tail of integrin subunit beta1A are critical mediators of FAK activation and cell spreading in GD25 cells.  相似文献   

4.
5.
The phosphotyrosine binding-like domain of talin activates integrins   总被引:1,自引:0,他引:1  
Cellular regulation of the ligand binding affinity of integrin adhesion receptors (integrin activation) depends on the integrin beta cytoplasmic domains (tails). The head domain of talin binds to several integrin beta tails and activates integrins. This head domain contains a predicted FERM domain composed of three subdomains (F1, F2, and F3). An integrin-activating talin fragment was predicted to contain the F2 and F3 subdomains. Both isolated subdomains bound specifically to the integrin beta3 tail. However, talin F3 bound the beta3 tail with a 4-fold higher affinity than talin F2. Furthermore, expression of talin F3 (but not F2) in cells led to activation of integrin alpha(IIb)beta3. A molecular model of talin F3 indicated that it resembles a phosphotyrosine-binding (PTB) domain. PTB domains recognize peptide ligands containing beta turns, often formed by NPXY motifs. NPX(Y/F) motifs are highly conserved in integrin beta tails, and mutations that disrupt this motif interfere with both integrin activation and talin binding. Thus, integrin binding to talin resembles the interactions of PTB domains with peptide ligands. These resemblances suggest that the activation of integrins requires the presence of a beta turn at NPX(Y/F) motifs conserved in integrin beta cytoplasmic domains.  相似文献   

6.
β1A integrin subunits with point mutations of the cytoplasmic domain were expressed in fibroblasts derived from β1-null stem cells. β1A in which one or both of the tyrosines of the two NPXY motifs (Y783, Y795) were changed to phenylalanines formed active α5β1 and α6β1 integrins that mediated cell adhesion and supported assembly of fibronectin. Mutation of the proline in either motif (P781, P793) to an alanine or of a threonine in the inter-motif sequence (T788) to a proline resulted in poorly expressed, inactive β1A. Y783,795F cells developed numerous fine focal contacts and exhibited motility on a surface. When compared with cells expressing wild-type β1A or β1A with the D759A activating mutation of a conserved membrane–proximal aspartate, Y783,795F cells had impaired ability to transverse filters in chemotaxis assays. Analysis of cells expressing β1A with single Tyr to Phe substitutions indicated that both Y783 and Y795 are important for directed migration. Actin-containing microfilaments of Y783,795F cells were shorter and more peripheral than microfilaments of cells expressing wild-type β1A. These results indicate that change of the phenol side chains in the NPXY motifs to phenyl groups (which cannot be phosphorylated) has major effects on the organization of focal contacts and cytoskeleton and on directed cell motility.  相似文献   

7.
The LDL receptor-related protein 1B (LRP1B) is a putative tumor suppressor homologous to LRP1. Both LRP1 and LRP1B contain cytoplasmic tails with several potential endocytosis motifs. Although the positions of these endocytic motifs are similar in both receptors, LRP1B is internalized at a 15-fold slower rate than LRP1. To determine whether the slow endocytosis of LRP1B is due to the utilization of an endocytosis motif other than the YATL motif used by LRP1, we tested minireceptors with mutations in each of the five potential motifs in the LRP1B tail. Only mutation of both NPXY motifs together abolished LRP1B endocytosis, suggesting that LRP1B can use either of these motifs for internalization. LRP1B contains a unique insertion of 33 amino acids not present in LRP1 that could lead to altered recognition of trafficking motifs. Surprisingly, deletion of this insertion had no effect on the endocytosis rate of LRP1B. However, replacing either half of the LRP1B tail with the corresponding LRP1 sequence markedly accelerated LRP1B endocytosis. From these data, we propose that both halves of the LRP1B cytoplasmic tail contribute to a unique global conformation, which results in less efficient recognition by endocytic adaptors and a slow endocytosis rate.  相似文献   

8.
Megalin is the main endocytic receptor ofthe proximal tubule and is responsible for reabsorption of manyfiltered proteins. In contrast to other members of the low-densitylipoprotein (LDL) receptor gene family, it is expressed on the apicalplasma membrane (PM) of polarized epithelial cells. To identifymegalin's apical sorting signal, we generated deletion mutants andchimeric minireceptors composed of complementary regions of megalin andLDL receptor-related protein (LRP) and assessed the distribution of themutants in Madin-Darby canine kidney (MDCK) cells by immunofluorescenceand cell surface biotinylation. Megalin and LRP minireceptors are correctly targeted to the apical and basolateral PM, respectively, ofMDCK cells. We found that the information that directs apical sortingis present in the cytoplasmic tail (CT) of megalin, which containsthree NPXY motifs, YXXØ, SH3, and dileucine motifs, and a PDZ-bindingmotif at its COOH terminus. Deletion analysis established that aminoacids 107-136 of the megalin-CT containing the second NPXY-likemotif are critical for apical sorting and targeting, whereas theregions containing the first and third NPXY motifs are required forefficient endocytosis. We conclude that the megalin-CT contains a novelapical sorting determinant and that cytoplasmic sorting machineryexists in MDCK cells for some apical transmembrane proteins.

  相似文献   

9.
Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin-null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation and the membrane-proximal salt bridge between alpha and beta1 tails have no apparent function under physiological conditions in vivo.  相似文献   

10.
Adenovirus (Ad) cell entry involves sequential interactions with host cell receptors that mediate attachment (CAR), internalization (alphavbeta3 and alphavbeta5), and penetration (alphavbeta5) of the endosomal membrane. These events allow the virus to deliver its genome to the nucleus. While integrins alphavbeta3 and alphavbeta5 both promote Ad internalization into cells, integrin alphavbeta5 selectively facilitates Ad-mediated membrane permeabilization and endosome rupture. In the experiments reported herein, we demonstrate that the intracellular domain of the integrin beta5 subunit specifically regulates Ad-mediated membrane permeabilization and gene delivery. CS-1 melanoma cells expressing a truncated integrin beta5 or a chimeric (beta5-beta3) cytoplasmic tail (CT) supported normal levels of Ad endocytosis but had reduced Ad-mediated gene delivery and membrane permeabilization relative to cells expressing a wild-type integrin beta5. Thin-section electron microscopy revealed that virion particles were capable of being endocytosed into cells expressing a truncated beta5CT, but they failed to escape cytoplasmic vesicles and translocate to the nucleus. Site-specific mutagenesis studies suggest that a C-terminal TVD motif in the beta5CT plays a major role in Ad membrane penetration.  相似文献   

11.
The FimH adhesin, localized at the distal tips of type 1 pili, binds mannose-containing glycoprotein receptors like alpha3beta1 integrins and stimulates bacterial entry into target host cells. Strains of uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections, utilize FimH to invade bladder epithelial cells. Here we set out to define the mechanism by which UPEC enters host cells by investigating four of the major entry routes known to be exploited by invasive pathogens: caveolae, clathrin, macropinocytosis and secretory lysosomes. Using pharmacological inhibitors in combination with RNA interference against specific endocytic pathway components, mutant host cell lines and a mouse infection model system, we found that type 1 pili-dependent bacterial invasion of host cells occurs via a cholesterol- and dynamin-dependent phagocytosis-like mechanism. This process did not require caveolae or secretory lysosomes, but was modulated by calcium levels, clathrin, and cooperative input from the primary clathrin adaptor AP-2 and a subset of alternate adaptors comprised of Numb, ARH and Dab2. These alternate clathrin adaptors recognize NPXY motifs, as found within the cytosolic tail of beta1 integrin, suggesting a functional link between the engagement of integrin receptors by FimH and the clathrin-dependent uptake of type 1-piliated bacteria.  相似文献   

12.
The NPXY sequence is highly conserved among integrin beta subunit cytoplasmic tails, suggesting that it plays a fundamental role in regulating integrin-mediated function. Evidence is provided that the NPXY structural motif within the beta 3 subunit, comprising residues 744-747, is essential for cell morphological and migratory responses mediated by integrin alpha v beta 3 in vitro and in vivo. Transfection of CS-1 melanoma cells with a cDNA encoding the wild-type integrin beta 3 subunit, results in de novo alpha v beta 3 expression and cell attachment, spreading, and migration on vitronectin. CS-1 cells expressing alpha v beta 3 with mutations that disrupt the NPXY sequence interact with soluble vitronectin or an RGD peptide, yet fail to attach, spread, or migrate on immobilized ligand. The biological consequences of these observations are underscored by the finding that CS-1 cells expressing wild-type alpha v beta 3 acquire the capacity to form spontaneous pulmonary metastases in the chick embryo when grown on the chorioallantoic membrane. However, migration-deficient CS-1 cells expressing alpha v beta 3 with mutations in the NPXY sequence lose this ability to metastasize. These findings demonstrate that the NPXY motif within the integrin beta 3 cytoplasmic tail is essential for alpha v beta 3-dependent post-ligand binding events involved in cell migration and the metastatic phenotype of melanoma cells.  相似文献   

13.
All members of the low density lipoprotein (LDL) receptor family contain at least one copy of the NPXY sequence within their cytoplasmic tails. For the LDL receptor, it has been demonstrated that the NPXY motif serves as a signal for rapid endocytosis through coated pits. Thus, it is generally believed that the NPXY sequences function as endocytosis signals for all the LDL receptor family members. The primary aim of this study is to define the endocytosis signal(s) within the cytoplasmic tail of LDL receptor-related protein (LRP). By using LRP minireceptors, which mimic the function and trafficking of full-length endogenous LRP, we demonstrate that the YXXL motif, but not the two NPXY motifs, serves as the dominant signal for LRP endocytosis. We also found that the distal di-leucine motif within the LRP tail contributes to its endocytosis, and its function is independent of the YXXL motif. Although the proximal NPXY motif and the proximal di-leucine motif each play a limited role in LRP endocytosis in the context of the full-length tail, these motifs were functional within the truncated receptor tail. In addition, we show that LRP minireceptor mutants defective in endocytosis signal(s) accumulate at the cell surface and are less efficient in delivery of ligand for degradation.  相似文献   

14.
Integrins play pivotal roles in supporting shear- and mechanical-stress-resistant cell adhesion and migration. These functions require the integrity of the short beta subunit cytoplasmic domains, which contain multiple, highly conserved tyrosine-based endocytic signals, typically found in receptors undergoing regulated, clathrin-dependent endocytosis. We hypothesized that these sequences may control surface integrin dynamics in statically adherent and/or locomoting cells via regulated internalization and polarized recycling of the receptors. By using site-directed mutagenesis and ectopic expression of the alphaL/beta2 integrin in Chinese hamster ovary cells, we found that Y735 in the membrane-proximal YRRF sequence is selectively required for recycling of spontaneously internalized receptors to the cell surface and to growth factor-induced membrane ruffles. Disruption of this motif by non-conservative substitutions has no effect on the receptor's adhesive function, but diverts internalized integrins from a recycling compartment into a degradative pathway. Conversely, the non-conservative F754A substitution in the membrane-proximal NPLF sequence abrogates ligand-dependent adhesion and spreading without affecting receptor recycling. Both of these mutants display a severe impairment in ligand-supported migration, suggesting the existence in integrin cytoplasmic domains of independent signals regulating apparently unrelated functions that are required to sustain cell migration over specific ligands.  相似文献   

15.
It has long been assumed that the C-terminal motif, NPXY, is the internalization signal for beta-amyloid precursor protein (APP) and that the NPXY tyrosine (Tyr743 by APP751 numbering, Tyr682 in APP695) is required for APP endocytosis. To evaluate this tenet and to identify the specific amino acids subserving APP endocytosis, we mutated all tyrosines in the APP cytoplasmic domain and amino acids within the sequence GYENPTY (amino acids 737-743). Stable cell lines expressing these mutations were assessed for APP endocytosis, secretion, and turnover. Normal APP endocytosis was observed for cells expressing Y709A, G737A, and Y743A mutations. However, Y738A, N740A, and P741A or the double mutation of Y738A/P741A significantly impaired APP internalization to a level similar to that observed for cells lacking nearly the entire APP cytoplasmic domain (DeltaC), arguing that the dominant signal for APP endocytosis is the tetrapeptide YENP. Although not an APP internalization signal, Tyr743 regulates rapid APP turnover because half-life increased by 50% with the Y743A mutation alone. Secretion of the APP-derived proteolytic fragment, Abeta, was tightly correlated with APP internalization, such that Abeta secretion was unchanged for cells having normal APP endocytosis but significantly decreased for endocytosis-deficient cell lines. Remarkably, secretion of the Abeta42 isoform was also reduced in parallel with endocytosis from internalization-deficient cell lines, suggesting an important role for APP endocytosis in the secretion of this highly pathogenic Abeta species.  相似文献   

16.
The interplay between the collagen-binding integrin, alpha2beta1, and platelet-derived growth factor (PDGF) receptors in the context of functional interactions with collagen was studied. We expressed either wild-type alpha2beta1 (alpha2beta1A) or alpha2beta1 with a Y783/795F mutation in the cytoplasmic tail of the beta1 subunit (alpha2beta1Amut) in the beta1-null fibroblastic cell line, GD25. GD25 cells lack endogenous expression of the alpha1 and alpha2 integrin subunits and do not adhere to collagen even after transfection with beta1A. Cells expressing alpha2beta1Amut contracted three-dimensional collagen lattices less efficiently than those expressing alpha2beta1A. PDGF-BB significantly stimulated lattice contraction by GD25-alpha2beta1Amut cells. Both cell types responded chemotactically to PDGF-BB. Focal adhesion kinase (FAK) and p130(Cas) were phosphorylated when GD25-alpha2beta1A cells, but not GD25-alpha2beta1Amut cells were seeded on collagen-coated dishes. Subsequent treatment with PDGF-BB further increased phosphorylation of FAK and p130(Cas) only in GD25-alpha2beta1A cells. However, when cultured within collagen lattices, FAK and p130(Cas) phosphorylation were stimulated in both alpha2beta1A- and alpha2beta1Amut-expressing cells but further phosphorylation, in response to subsequent treatment with PDGF-BB, was seen only in GD25-alpha2beta1A cells. We show that the stimulatory effects of PDGF-BB on collagen gel contraction and chemotaxis by GD25-alpha2beta1Amut cells were mediated by the alphavbeta3 integrin. Phosphorylation of p130(Cas), but not FAK, in GD25-alpha2beta1Amut cells seeded in collagen lattices also depended on alphavbeta3. Our results show that PDGF-BB stimulation of fibroblast-collagen interactions is mediated by the alphavbeta3 integrin when beta1 integrin function is impaired.  相似文献   

17.
Select plasma membrane proteins can be marked as cargo for inclusion into clathrin-coated pits by common internalization signals (e.g. YXXΦ, dileucine motifs, NPXY) that serve as universal recognition sites for the AP-2 adaptor complex or other clathrin-associated sorting proteins. However, some surface proteins, such as the Kir2.3 potassium channel, lack canonical signals but are still targeted for clathrin-dependent endocytosis. Here, we explore the mechanism. We found an unusual endocytic signal in Kir2.3 that is based on two consecutive pairs of hydrophobic residues. Characterized by the sequence ΦΦXΦΦ (a tandem di-hydrophobic (TDH) motif, where Φ is a hydrophobic amino acid), the signal shows no resemblance to other endocytic motifs, yet it directly interacts with AP-2 to target the Kir2.3 potassium channel into the endocytic pathway. We found that the tandem di-hydrophobic motif directly binds to the ασ2 subunits of AP-2, interacting within a large hydrophobic cleft that encompasses part of the docking site for di-Leu signals, but includes additional structures. These observations expand the repertoire of clathrin-dependent internalization signals and the ways in which AP-2 can coordinate endocytosis of cargo proteins.  相似文献   

18.
Clathrin-mediated endocytosis depends upon the coordinated assembly of a large number of discrete clathrin coat components to couple cargo selection with rapid internalization from the cell surface. Accordingly, the heterotetrameric AP-2 adaptor complex binds not only to clathrin and select cargo molecules, but also to an extensive family of endocytic accessory factors and alternate sorting adaptors. Physical associations between accessory proteins and AP-2 occur primarily through DP(F/W) or FXDXF motifs, which engage an interaction surface positioned on the C-terminal platform subdomain of the independently folded alpha subunit appendage. Here, we find that the WXX(F/W)X(D/E) interaction motif found in several endocytic proteins, including synaptojanin 1, stonin 2, AAK1, GAK, and NECAP1, binds a second interaction site on the bilobal alpha appendage, located on the N-terminal beta sandwich subdomain. Both alpha appendage binding sites can be engaged synchronously, and our data reveal that varied assemblies of interaction motifs with different affinities for two sites upon the alpha appendage can provide a mechanism for temporal ordering of endocytic accessory proteins during clathrin-mediated endocytosis.  相似文献   

19.
Loss of β1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal β1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal β1 tail using nuclear magnetic resonance (NMR). Mice carrying alanine mutations have moderate renal collecting-system developmental abnormalities relative to β1-null mice. Phenylalanine mutations did not affect renal collecting-system development but increased susceptibility to renal injury. NMR spectra in bicelles showed the distal β1 tail is disordered and does not interact with the model membrane surface. Alanine or phenylalanine mutations did not alter β1 structure or interactions between α and β1 subunit transmembrane/cytoplasmic domains; however, they did decrease talin and kindlin binding. Thus, these studies highlight the fact that the functional roles of the NPXY motifs are organ dependent. Moreover, the β1 cytoplasmic tail, in the context of the adjacent transmembrane domain in bicelles, is significantly different from the more ordered, membrane-associated β3 integrin tail. Finally, tyrosine mutations of β1 NPXY motifs induce phenotypes by disrupting their interactions with critical integrin binding proteins like talins and kindlins.  相似文献   

20.
The VLA-4 integrin supports static cell-cell, cell-matrix adhesion, and dynamic interactions with VCAM-1. Although functions for well-conserved beta(1) integrin cytoplasmic domains in regulating static cell adhesion has been established, the molecular basis for beta(1) integrin-dependent arrest on VCAM-1 under flow conditions remains poorly understood. We have transfected the beta(1) integrin-deficient A1 Jurkat T cell line with beta(1) cDNA constructs with deletions of the NPXY motifs and specific mutations of tyrosine residues. Deletion of either NPXY motif impaired static adhesion induced by CD2 or CD47 triggering or direct beta(1) integrin stimulation. In contrast, PMA-induced adhesion to VCAM-1 was unaffected by deletion of the NPIY motif and only slightly impaired by deletion of NPKY. Moreover, deletion of the NPIY motif resulted in enhanced rolling and reduced arrest on VCAM-1 under shear flow conditions. In contrast, deletion of the NPKY motif did not alter arrest under flow. Although tyrosine to phenylalanine substitutions within two NPXY motifs did not alter static adhesion to VCAM-1, these mutations enhanced arrest on VCAM-1 under flow conditions. Furthermore, although deletion of the C'-terminal 5 AA of the beta(1) cytoplasmic domain dramatically impaired activation-dependent static adhesion, it did not impair arrest on VCAM-1 under flow conditions. Thus, our results demonstrate distinct structural requirements for VLA-4 function under static and shear flow conditions. This may be relevant for VLA-4 activity regulation in different anatomic compartments, such as when circulating cells arrest on inflamed endothelium under shear flow and when resident cells in bone marrow interact with VCAM-1- positive stromal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号