首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
《Epigenetics》2013,8(3):129-132
One of the key breakthroughs in the epigenetics/chromatin field in the last several years was the identification of enzymes capable of removing the methyl group from methylated lysines in histone proteins. Lysine-specific demethylase 1 (LSD1) was the first such enzyme identified, which has been shown to demethylate histone H3 on lysine 4 (H3K4) and lysine 9 (H3K9). LSD1 is essential for mammalian development and likely involved in many biological processes. Recent studies show that LSD1 demethylates p53 and Dnmt1 and regulates their cellular functions, indicating that LSD1 fulfills its biological functions by directly acting on both histone and non-histone proteins. LSD1 contains several defined domains and associates with a number of protein complexes. Interacting partners of LSD1 may play key roles in determining/modulating the activity and specificity of LSD1.  相似文献   

7.
8.
9.
Human histone demethylase LSD1 is a flavin-dependent amine oxidase that catalyzes the specific removal of methyl groups from mono- and dimethylated Lys4 of histone H3. The N-terminal tail of H3 is subject to various covalent modifications, and a fundamental question in LSD1 biology is how these epigenetic marks affect the demethylase activity. We show that LSD1 does not have a strong preference for mono- or dimethylated Lys4 of H3. Substrate recognition is not confined to the residues neighboring Lys4, but it requires a sufficiently long peptide segment consisting of the N-terminal 20 amino acids of H3. Electrostatic interactions are an important factor in protein-substrate recognition, as indicated by the high sensitivity of Km to ionic strength. We have probed LSD1 for its ability to demethylate Lys4 in presence of a second modification on the same peptide substrate. Methylation of Lys9 does not affect enzyme catalysis. Conversely, Lys9 acetylation causes an almost 6-fold increase in the Km value, whereas phosphorylation of Ser10 totally abolishes activity. LSD1 is inhibited by a demethylated peptide with an inhibition constant of 1.8 microM, suggesting that LSD1 can bind to H3 independently of Lys4 methylation. LSD1 is a chromatin-modifying enzyme, which is able to read different epigenetic marks on the histone N-terminal tail and can serve as a docking module for the stabilization of the associated corepressor complex(es) on chromatin.  相似文献   

10.
11.
12.
We have compared the expression of the retinoblastoma (Rb) and p53 genes in normal human fibroblasts, colon carcinoma cell lines, matched pairs of colorectal tumor tissues and adjacent normal mucosa and in synchronized human diploid fibroblast cell line W138. The increased expression of Rb and p53 RNA was observed in a majority of colorectal cancers in comparison to adjacent normal mucosa and is accompanied by proportional increase in the expression of histone H3 gene. The Rb and p53 RNA levels varied significantly between the various colon carcinoma cell lines. However, we found that the expression of Rb and p53 RNA is regulated differently in cell cycle synchronized normal human fibroblasts. The Rb mRNA level did not change with the position in the cell cycle and did not differ significantly whether the cells were serum deprived or in 10% serum. But p53 mRNA expression follows the same pattern as histone H3 mRNA.  相似文献   

13.
14.
Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.  相似文献   

15.
Lactoferrin (Lf) has been implicated in the regulation of cell growth. However, the molecular mechanism underlying this effect remains to be elucidated. In this study, we show that Lf is involved in the cell cycle control system in a variety of cell lines, through retinoblastoma protein (Rb)--mediated growth arrest. We observed that Lf induces the expression of Rb, a signal mediator of cell cycle control, and that a majority of this Lf-induced Rb persists in a hypophosphorylated form. In addition, we determined that Lf specifically augments the level of a cyclin-dependent kinase inhibitor, p21, but not p27. Upon treatment with Lf, H1299 cells expressing defective p53 effected an augmentation of endogenous p21 levels, which may contribute to the accumulation of hypophosphorylated Rb. A substantial quantity of active Rb binds more efficiently to E2F1 in cells that express Lf and consequently blocks the expression of an E2F1-responsive gene, thereby suggesting that Lf plays a crucial role in the inhibition of tumor cell growth. Therefore, we conclude that the antiproliferative effects of Lf can likely be attributed to the elevated levels of hypophosphorylated Rb.  相似文献   

16.
Methylation of Lys residues on histone proteins is a well known and extensively characterized epigenetic mark. The recent discovery of lysine-specific demethylase 1 (LSD1) demonstrated that lysine methylation can be dynamically controlled. Among the histone demethylases so far identified, LSD1 has the unique feature of functioning through a flavin-dependent amine oxidation reaction. Data base analysis reveals that mammalian genomes contain a gene (AOF1, for amine-oxidase flavin-containing domain 1) that is homologous to the LSD1-coding gene. Here, we demonstrate that the protein encoded by AOF1 represents a second mammalian flavin-dependent histone demethylase, named LSD2. The new demethylase is strictly specific for mono- and dimethylated Lys4 of histone H3, recognizes a long stretch of the H3 N-terminal tail, senses the presence of additional epigenetic marks on the histone substrate, and is covalently inhibited by tranylcypromine. As opposed to LSD1, LSD2 does not form a biochemically stable complex with the C-terminal domain of the corepressor protein CoREST. Furthermore, LSD2 contains a CW-type zinc finger motif with potential zinc-binding sites that are not present in LSD1. We conclude that mammalian LSD2 represents a new flavin-dependent H3-Lys4 demethylase that features substrate specificity properties highly similar to those of LSD1 but is very likely to be part of chromatin-remodeling complexes that are distinct from those involving LSD1.  相似文献   

17.
18.
Hepatitis B virus X (HBx) protein is known as an oncogenic transactivator, E2F1 as a positive regulator of the cell cycle, and pRb as a tumor suppressor. Here, we investigated the functional interactions of these proteins on the human Rb promoter. Interestingly, HBx transactivated the Rb promoter cooperatively with E2F1 in HepG2 cells but not in HeLa cells, in which the functions of p53 and pRb are inactive. Combinatorial cotransfection analyses in HepG2 cells showed that HBx overcame the inhibition of E2F1 activity by pRb but not that by p53. Domain analysis showed that aa 47-70 and aa 117-133 of HBx are important for this effect. These results suggest that HBx could inhibit the pRb tumor suppressor and increase E2F1 activity. Our data support the oncogenic potential of HBx, which may cause HBV-infected cells to grow continuously in the development of hepatocellular carcinoma.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号