首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Modulation of the vitamin D receptor (VDR) with a ligand has the potential to be useful for the oral treatment of osteoporosis. One component of our lead generation strategy to identify synthetic ligands for VDR included a fragment based drug design approach. Screening of ligands in a VDR fluorescence polarization assay and a RXR/VDR conformation sensing assay resulted in the identification of multiple fragment hits (lean >0.30). These fragment scaffolds were subsequently evaluated for interaction with the VDR ligand binding domain using hydrogen–deuterium exchange (HDX) mass spectrometry. Significant protection of H/D exchange was observed for some fragments in helixes 3, 7, and 8 of the ligand binding domain, regions which are similar to those seen for the natural hormone VD3. The fragments appear to mimic the A-ring of VD3 thereby providing viable starting points for synthetic expansion.  相似文献   

2.
A key challenge in structure-based discovery is accounting for modulation of protein-ligand interactions by ordered and bulk solvent. To investigate this, we compared ligand binding to a buried cavity in Cytochrome c Peroxidase (CcP), where affinity is dominated by a single ionic interaction, versus a cavity variant partly opened to solvent by loop deletion. This opening had unexpected effects on ligand orientation, affinity, and ordered water structure. Some ligands lost over ten-fold in affinity and reoriented in the cavity, while others retained their geometries, formed new interactions with water networks, and improved affinity. To test our ability to discover new ligands against this opened site prospectively, a 534,000 fragment library was docked against the open cavity using two models of ligand solvation. Using an older solvation model that prioritized many neutral molecules, three such uncharged docking hits were tested, none of which was observed to bind; these molecules were not highly ranked by the new, context-dependent solvation score. Using this new method, another 15 highly-ranked molecules were tested for binding. In contrast to the previous result, 14 of these bound detectably, with affinities ranging from 8 µM to 2 mM. In crystal structures, four of these new ligands superposed well with the docking predictions but two did not, reflecting unanticipated interactions with newly ordered waters molecules. Comparing recognition between this open cavity and its buried analog begins to isolate the roles of ordered solvent in a system that lends itself readily to prospective testing and that may be broadly useful to the community.  相似文献   

3.
Heat shock protein 90 (Hsp90) is a molecular chaperone which regulates maturation and stabilization of its substrate proteins, known as client proteins. Many client proteins of Hsp90 are involved in tumor progression and survival and therefore Hsp90 can be a good target for developing anticancer drugs. With the aim of efficiently identifying a new class of orally available inhibitors of the ATP binding site of this protein, we conducted fragment screening and virtual screening in parallel against Hsp90. This approach quickly identified 2-aminotriazine and 2-aminopyrimidine derivatives as specific ligands to Hsp90 with high ligand efficiency. In silico evaluation of the 3D X-ray Hsp90 complex structures of the identified hits allowed us to promptly design CH5015765, which showed high affinity for Hsp90 and antitumor activity in human cancer xenograft mouse models.  相似文献   

4.
We report the use of fragment screening and fragment based drug design to develop a PI3γ kinase fragment hit into a lead. Initial fragment hits were discovered by high concentration biochemical screening, followed by a round of virtual screening to identify additional ligand efficient fragments. These were developed into potent and ligand efficient lead compounds using structure guided fragment growing and merging strategies. This led to a potent, selective, and cell permeable PI3γ kinase inhibitor with good metabolic stability that was useful as a preclinical tool compound.  相似文献   

5.
This study reports the application of inverse virtual screening (iVS) methodologies to identify cellular proteins as suitable targets for a library of heterocyclic small-molecules, with potential pharmacological implications. Standard synthetic procedures allow facile generation of these ligands showing a high degree of core scaffold diversity. Specifically, we have computationally investigated the binding efficacy of the new series for target proteins which are involved in cancer pathogenesis. As a result, nine macromolecules demonstrated efficient binding interactions for the molecular dataset, in comparison to the co-crystallised ligand for each target. Moreover, the iVS analysis led us to confirm that 27 analogues have high affinity for one or more examined cellular proteins. The additional evaluation of ADME and drug score for selected hits also highlights their capability as drug candidates, demonstrating valuable leads for further structure optimisation and biological studies.  相似文献   

6.
Kinesin spindle protein (KSP) belongs to the kinesin superfamily of microtubule-based motor proteins. KSP is responsible for the establishment of the bipolar mitotic spindle which mediates cell division. Inhibition of KSP expedites the blockade of the normal cell cycle during mitosis through the generation of monoastral MT arrays that finally cause apoptotic cell death. As KSP is highly expressed in proliferating/cancer cells, it has gained considerable attention as a potential drug target for cancer chemotherapy. Therefore, this study envisaged to design novel KSP inhibitors by employing computational techniques/tools such as pharmacophore modelling, virtual database screening, molecular docking and molecular dynamics. Initially, the pharmacophore models were generated from the data-set of highly potent KSP inhibitors and the pharmacophore models were validated against in house test set ligands. The validated pharmacophore model was then taken for database screening (Maybridge and ChemBridge) to yield hits, which were further filtered for their drug-likeliness. The potential hits retrieved from virtual database screening were docked using CDOCKER to identify the ligand binding landscape. The top-ranked hits obtained from molecular docking were progressed to molecular dynamics (AMBER) simulations to deduce the ligand binding affinity. This study identified MB-41570 and CB-10358 as potential hits and evaluated these experimentally using in vitro KSP ATPase inhibition assays.  相似文献   

7.
For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (K(A)>10(8)M(-1); K(D)<10(-8)M), a new challenge arises: to measure these values accurately. Isothermal titration calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate.  相似文献   

8.
In the search for a new class of histone deacetylase inhibitors, we prepared a series of simple benzofused hydroxamic acids to find an anchoring fragment of minimal molecular weight. These initial hits, all belonging to the benzothiophene class, showed very good ligand efficiencies. Following these findings, a classical fragment growing approach was performed to increase binding affinity and cytotoxicity.  相似文献   

9.
This work describes the genetic engineering and characterization of a histidine-tagged fragment of protein A. The histidine tag results in the site-selective immobilization of the protein A receptor and the preservation of its high ligand affinity when immobilized on solid supports. The fragment was expressed at high yield in E. coli and purified to homogeneity. When selectively immobilized to histidine binding matrices, the protein A fragment exhibits high affinity for soluble IgG. We further demonstrate from adsorption isotherms that the receptor exhibits a homogeneous, high affinity population at densities where steric crowding between large ligands does not affect the apparent receptor affinity. This engineered receptor is appropriate for a range of applications including sensor design or those using immobilized Fc-tagged proteins.  相似文献   

10.
Soluble epoxide hydrolase (sEH) is a component of the arachidonic acid cascade and is a candidate target for therapies for hypertension or inflammation. Although many sEH inhibitors are available, their scaffolds are not structurally diverse, and knowledge of their specific interactions with sEH is limited. To obtain detailed structural information about protein–ligand interactions, we conducted fragment screening of sEH, analyzed the fragments using high-throughput X-ray crystallography, and determined 126 fragment-bound structures at high resolution. Aminothiazole and benzimidazole derivatives were identified as novel scaffolds that bind to the catalytic triad of sEH with good ligand efficiency. We further identified fragment hits that bound to subpockets of sEH called the short and long branches. The water molecule conserved in the structure plays an important role in binding to the long branch, whereas Asp496 and the main chain of Phe497 form hydrogen bonds with fragment hits in the short branch. Fragment hits and their crystal structures provide structural insights into ligand binding to sEH that will facilitate the discovery of novel and potent inhibitors of sEH.  相似文献   

11.
Various SH2 competitive binding assays, based on different techniques, have been described in the literature to identify and characterize SH2 ligands. The consideration that most reported methods show experimental limitations associated with assay parameters has prompted us to base our Src-SH2 inhibitor discovery program on the use of two different assays. In this study, two conceptually different biochemical methods designed to discover Src-SH2 inhibitors, respectively scintillation proximity assay (SPA) and surface plasmon resonance (SPR), have been evaluated and compared. For its high sensitivity and adaptability to automation SPA was chosen for high capacity screening (primary screen), whereas SPR was used for hits confirmation (secondary screening). However with the drastic improvement of inhibitor affinities, the limit of sensitivity was rapidly reached for the SPR assay based on the canonical pYEEI ligand. The substitution of the natural, monophosphorylated peptide ligand with a triphosphorylated peptide has allowed us to remarkably increase its sensitivity, so that molecules with nanomolar affinities could be easily differentiated in terms of IC(50) ranking. Such a new, improved SPR assay can be of great interest for the study of high affinity ligands of different SH2-based drug targets.  相似文献   

12.
Novel affinity ligands, consisting of ATP-resembling part coupled with specificity determining peptide fragment, were proposed for purification of protein kinases. Following this approach affinity sorbents based on two closely similar ligands AdoC-Aoc-Arg4-Lys and AdoC-Aoc-Arg4-NH(CH2)6NH2, where AdoC stands for adenosine-5'-carboxylic acid and Aoc for amino-octanoic acid, were synthesized and tested for purification of recombinant protein kinase A catalytic subunit directly from crude cell extract. Elution of the enzyme with MgATP as well as L-arginine yielded homogeneous protein kinase A preparation in a single purification step. Also protein kinase A from pig heart homogenate was selectively isolated using MgATP as eluting agent. Protein kinase with acidic specificity determinant (CK2) as well as other proteins possessing nucleotide binding site (L-type pyruvate kinase) or sites for wide variety of different ligands (bovine serum albumin) did not bind to the column, pointing to high selectivity of the bi-functional binding mode of the affinity ligand.  相似文献   

13.
Screening assays using target-based affinity selection coupled with high-sensitivity detection technologies to identify small-molecule hits from chemical libraries can provide a useful discovery approach that complements traditional assay systems. Affinity selection-mass spectrometry (AS-MS) is one such methodology that holds promise for providing selective and sensitive high-throughput screening platforms. Although AS-MS screening platforms have been used to discover small-molecule ligands of proteins from many target families, they have not yet been used routinely to screen integral membrane proteins. The authors present a proof-of-concept study using size exclusion chromatography coupled to AS-MS to perform a primary screen for small-molecule ligands of the purified muscarinic M2 acetylcholine receptor, a G-protein-coupled receptor. AS-MS is used to characterize the binding mechanisms of 2 newly discovered ligands. NGD-3350 is a novel M2-specific orthosteric antagonist of M2 function. NGD-3366 is an allosteric ligand with binding properties similar to the allosteric antagonist W-84, which decreases the dissociation rate of N-methyl-scopolamine from the M2 receptor. Binding properties of the ligands discerned from AS-MS assays agree with those from in vitro biochemical assays. The authors conclude that when used with appropriate small-molecule libraries, AS-MS may provide a useful high-throughput assay system for the discovery and characterization of all classes of integral membrane protein ligands, including allosteric modulators.  相似文献   

14.
The main aim of the study is to identify molecules that can disrupt quorum sensing (QS) system of Vibrio harveyi and therefore perhaps the production of toxins. Recently, a novel class of dioxazaborocane derivatives has been found to block AI-2 QS by targeting LuxPQ, but the mechanism of protein inhibition is still unclear. In order to investigate the possible binding modes, all the derivatives were docked into the binding site of LuxP using induced fit docking (IFD). The computed binding affinity is in good agreement with the experimental data. Resultant protein–ligand complexes were simulated using Desmond module and the result revealed better binding of ligands in the binding site of LuxP. Both pharmacophore- and structure-based virtual screening was performed to identify novel hits against LuxP. A filtering protocol, including lipinski filters, number of rotatable bonds and three levels of docking precisions were used for the selection of hits with specific properties. The virtual screening results were then combined and analyzed, which retrieved six hits with significant Glide score, binding affinity toward LuxP. The pharmacokinetic properties of the retrieved hits are in the acceptable range. Enrichment calculation was performed to validate the final hits, to discriminate the active compounds from the inactive compounds. The identified hits could serve as a base for further drug development against LuxP of Vibrio harveyi.  相似文献   

15.
The specific molecular interactions of alpha-helical peptide, human glucagon (i.e., intermolecular self-association and specific receptor-binding affinity) provided a rationale for using the glucagon as the fusion expression partner to achieve high productivity of foreign proteins both in vivo (in bacterial fusion-expression system) and in vitro (in affinity column chromatography). The fusion of glucagon peptide(s) effectively promoted homogeneous aggregate formation of recombinant proteins while avoiding intermolecular crosslinking by disulfide bridges. High sensitivity of the self-aggregation to sequence effects resulted from two distinct nonpolar domains of glucagon, determining specificity of molecular interaction and aggregate size of recombinant proteins. An N-terminal domain of glucagon molecule (Phe6-Tyr10-Tyr13) could be a certain hydrophobic moiety involved in intermolecular self-association (probably, via helix-helix docking), while a C-terminal domain (Phe22-Trp25-Leu26) seems to critically affect the oligomer size in the off-pathway aggregation of synthesized fusion proteins. An N-terminal extracellular domain of human glucagon receptor was recombinantly expressed in Escherichia coli, immobilized to a chromatography column, and efficiently renatured to a conformation that attains high specificity in interaction with N-terminus glucagon molecules of recombinant fusion proteins. Through column chromatography employing the receptor fragment as affinity ligand, the recombinant proteins were efficiently purified from total intracellular proteins, and the long-term ligand stability was evidently proven through multiple cyclic-purification experiments. Major scaffolds for using protein ligands are large-scale production in a low-cost expression system and long-term stable operation with selective-binding affinity. From this point of view, the extracellular fragment of human glucagon receptor used in this study seems to be a new potent ligand for fusion protein-based affinity chromatography.  相似文献   

16.
The fragment-based drug design approach consists of screening libraries of fragment-like ligands, to identify hits that typically bind the protein target with weak affinity ( \(100\,\upmu \hbox {M}\) –5 mM). The determination of the protein–fragment complex 3D structure constitutes a crucial step for uncovering the key interactions responsible for the protein–ligand recognition, and for growing the initial fragment into potent active compounds. The vast majority of fragments are aromatic compounds that induce chemical shift perturbations (CSP) on protein NMR spectra. These experimental CSPs can be quantitatively used to guide the ligand docking, through the comparison between experimental CSPs and CSP back-calculation based on the ring current effect. Here we implemented the CSP back-calculation into the scoring function of the program PLANTS. We compare the results obtained with CSPs measured either on amide or aliphatic protons of the human peroxiredoxin 5. We show that the different kinds of protons lead to different results for resolving the 3D structures of protein–fragment complexes, with the best results obtained with the \(\hbox {H}_{\alpha }\) protons.  相似文献   

17.
Receptor recognition by gp130 cytokines   总被引:9,自引:0,他引:9       下载免费PDF全文
Bravo J  Heath JK 《The EMBO journal》2000,19(11):2399-2411
Cytokines of the gp130 family exert their diverse biological effects by formation of stable high affinity transmembrane receptor complexes that are characterized by the presence of the shared transmembrane signalling receptor gp130. Different gp130 ligands form signalling complexes that vary in both composition and stoichiometry. Analysis of the three-dimensional structure of selected ligands and receptor elements indicates that ligands display three topologically conserved receptor recognition epitopes that interact with complementary ligand recognition elements. The composition of the signalling complex and downstream biological responses is defined by the relative affinity of different receptor components for these epitopes. The detailed structure of receptor recognition epitopes indicates that the generation of small molecule cytokine mimetics may be a feasible objective.  相似文献   

18.
A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD).  相似文献   

19.
Rabies virus glycoprotein and snake venom curaremimetic neurotoxins share a region of high homology (30-45 for neurotoxins and 190-203 for the glycoprotein) in the regions that are believed to be responsible for binding the nicotinic acetylcholine receptor. Monoclonal antibodies raised to the 190-203 synthetic fragment of rabies virus glycoprotein were immobilized on a high performance affinity chromatography column and were able to bind neurotoxins. Toxins were displaced from the affinity column by elution at acidic pH and by affinity competition with acetylcholine at neutral pH. Furthermore, the affinity column proved to be useful for the purification of cholinergic ligands. Overall, these results indicate that the paratope of our monoclonal antibodies could behave as an 'internal image' of the nicotinic cholinergic receptor acetylcholine binding site.  相似文献   

20.
Using ligand and receptor based virtual screening approaches we have identified potential virtual screening hits targeting type II dehydroquinase from Mycobacterium tuberculosis, an effective and validated anti-mycobacterial target. Initially, we applied a virtual screening workflow based on a combination of 2D structural fingerprints, 3D pharmacophore and molecular docking to identify compounds that rigidly match specific aspects of ligand bioactive conformation. Subsequently, the resulting compounds were ranked and prioritized using receptor interaction fingerprint based scoring and quantitative structure activity relationship model developed using already known actives. The virtual screening hits prioritized belong to several classes of molecular scaffolds with several available substitution positions that could allow chemical modification to enhance binding affinity. Finally, identified hits may be useful to a medicinal chemist or combinatorial chemist to pick up the new molecular starting points for medicinal chemistry optimization for the design of novel type II dehydroquinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号